akhtet commited on
Commit
164e239
·
1 Parent(s): 2774db3

Upload existing code from zero-shot-example

Browse files
Files changed (1) hide show
  1. app.py +58 -1
app.py CHANGED
@@ -1,4 +1,61 @@
1
  import streamlit as st
 
 
2
 
3
  x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import torch
3
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
4
 
5
  x = st.slider('Select a value')
6
+ st.write(x, 'squared is', x * x)
7
+
8
+ model_ids = {
9
+ 'Bart MNLI': 'facebook/bart-large-mnli',
10
+ 'Bart MNLI + Yahoo Answers': 'joeddav/bart-large-mnli-yahoo-answers',
11
+ 'XLM Roberta XNLI (cross-lingual)': 'joeddav/xlm-roberta-large-xnli'
12
+ }
13
+
14
+ MODEL_DESC = {
15
+ 'Bart MNLI': """Bart with a classification head trained on MNLI.\n\nSequences are posed as NLI premises and topic labels are turned into premises, i.e. `business` -> `This text is about business.`""",
16
+ 'Bart MNLI + Yahoo Answers': """Bart with a classification head trained on MNLI and then further fine-tuned on Yahoo Answers topic classification.\n\nSequences are posed as NLI premises and topic labels are turned into premises, i.e. `business` -> `This text is about business.`""",
17
+ 'XLM Roberta XNLI (cross-lingual)': """XLM Roberta, a cross-lingual model, with a classification head trained on XNLI. Supported languages include: _English, French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili, and Urdu_.
18
+ Note that this model seems to be less reliable than the English-only models when classifying longer sequences.
19
+ Examples were automatically translated and may contain grammatical mistakes.
20
+ Sequences are posed as NLI premises and topic labels are turned into premises, i.e. `business` -> `This text is about business.`""",
21
+ }
22
+
23
+ device = 0 if torch.cuda.is_available() else -1
24
+
25
+ @st.cache_resource
26
+ def load_models():
27
+ return {id: AutoModelForSequenceClassification.from_pretrained(id) for id in model_ids.values()}
28
+
29
+ models = load_models()
30
+
31
+ @st.cache_resource
32
+ def load_tokenizer(tok_id):
33
+ return AutoTokenizer.from_pretrained(tok_id)
34
+
35
+ def get_most_likely(nli_model_id, sequence, labels, hypothesis_template, multi_class):
36
+ classifier = pipeline(
37
+ 'zero-shot-classification',
38
+ model=models[nli_model_id],
39
+ tokenizer=load_tokenizer(nli_model_id),
40
+ device=device
41
+ )
42
+ outputs = classifier(
43
+ sequence,
44
+ candidate_labels=labels,
45
+ hypothesis_template=hypothesis_template,
46
+ multi_label=multi_class
47
+ )
48
+ return outputs['labels'], outputs['scores']
49
+
50
+ def main():
51
+
52
+ hypothesis_template = "This text is about {}."
53
+
54
+ model_desc = st.sidebar.selectbox('Model', list(MODEL_DESC.keys()), 0)
55
+ st.sidebar.markdown('#### Model Description')
56
+ st.sidebar.markdown(MODEL_DESC[model_desc])
57
+
58
+ model_id = model_ids[model_desc]
59
+
60
+ if __name__ == '__main__':
61
+ main()