File size: 1,522 Bytes
c2fa877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import logging
import os

import click
import pandas as pd
from dotenv import load_dotenv
from elevenlabs import ElevenLabs


logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s (%(filename)s): %(message)s",
)
logger = logging.getLogger("export-available-voices")


load_dotenv()


@click.command()
@click.option("-ak", "--api-key", envvar="11LABS_API_KEY")
@click.option("-o", "--output-csv-path", default="data/11labs_available_tts_voices.csv")
def main(*, api_key: str | None, output_csv_path: str) -> None:
    if api_key is None:
        raise OSError("Who's gonna set the `11LABS_API_KEY` environmental variable?")
    
    client = ElevenLabs(api_key=api_key)
    response = client.voices.get_all()
    available_voices = pd.DataFrame.from_records([voice.model_dump(
        include={
            "voice_id", "name", "language", "labels", "description", "preview_url",
        },
    ) for voice in response.voices])
    available_voices = pd.concat((
        available_voices.drop(columns=[
            "labels", "description", "available_for_tiers", "settings", "sharing",
            "high_quality_base_model_ids", "safety_control", "voice_verification",
            "category", "samples",
        ]),
        pd.DataFrame.from_records(available_voices["labels"]).rename(
            columns={"use_case": "category"}
        ),
    ), axis=1)

    available_voices.drop(columns="fine_tuning").to_csv(output_csv_path, index=False)


if __name__ == "__main__":
    main()