Spaces:
Sleeping
Sleeping
File size: 1,522 Bytes
c2fa877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import logging
import os
import click
import pandas as pd
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s (%(filename)s): %(message)s",
)
logger = logging.getLogger("export-available-voices")
load_dotenv()
@click.command()
@click.option("-ak", "--api-key", envvar="11LABS_API_KEY")
@click.option("-o", "--output-csv-path", default="data/11labs_available_tts_voices.csv")
def main(*, api_key: str | None, output_csv_path: str) -> None:
if api_key is None:
raise OSError("Who's gonna set the `11LABS_API_KEY` environmental variable?")
client = ElevenLabs(api_key=api_key)
response = client.voices.get_all()
available_voices = pd.DataFrame.from_records([voice.model_dump(
include={
"voice_id", "name", "language", "labels", "description", "preview_url",
},
) for voice in response.voices])
available_voices = pd.concat((
available_voices.drop(columns=[
"labels", "description", "available_for_tiers", "settings", "sharing",
"high_quality_base_model_ids", "safety_control", "voice_verification",
"category", "samples",
]),
pd.DataFrame.from_records(available_voices["labels"]).rename(
columns={"use_case": "category"}
),
), axis=1)
available_voices.drop(columns="fine_tuning").to_csv(output_csv_path, index=False)
if __name__ == "__main__":
main()
|