Spaces:
Running
Running
File size: 10,747 Bytes
ddb099d c2260d3 ddb099d c2260d3 ddb099d 83f1a51 ddb099d 83f1a51 ddb099d c2260d3 ddb099d c2260d3 ddb099d c2260d3 ddb099d c2260d3 ddb099d c2260d3 ddb099d c2260d3 ddb099d c2260d3 ddb099d c2260d3 ddb099d c2260d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import json
import os
import re
import librosa
import requests
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from openai import OpenAI
from langchain_community.document_loaders import PyPDFLoader
load_dotenv()
api_key = os.getenv("AIML_API_KEY")
FILE_SIZE_MAX = 0.5 #in mb
CHARACTER_CLASSIFICATION_PROMPT = """
**Task:**
Analyze the provided story text and classify each character in the given list \
by their gender. Use `"M"` for Male and `"F"` for Female. Classify the \
characters based on contextual clues such as names, pronouns, descriptions, \
roles, and interactions within the story.
**Output Format:**
Provide the classification in a JSON object where each key is a character's \
name, and the value is `"M"` or `"F"`.
**Example Input:**
```
### Story
Once upon a time Alice met Bob and Charlie.
### Characters
["alice", "bob", "charlie"]
```
**Example Output:**
```json
{
"alice": "F",
"bob": "M",
"charlie": "M"
}
"""
TEXT_ANNOTATION_PROMPT = """\
**Task:**
Analyze the provided text and annotate each segment by indicating whether it is \
part of the narration or spoken by a specific character. Use "Narrator" for \
narration and the character's name for dialogues. Format the annotated text in a \
clear and consistent manner, suitable for subsequent text-to-speech processing.
**Formatting Guidelines:**
- Narration: Prefix with `[Narrator]`
- Character Dialogue: Prefix with `[Character Name]`
- Multiple Characters Speaking: Prefix with `[Character Name 1] [Character Name 2] ... [Character Name N]`
- Consistent Line Breaks: Ensure each labeled segment starts on a new line for clarity.
"""
VOICES = pd.read_csv("data/11labs_tts_voices.csv").query("language == 'en'")
class AudiobookBuilder:
def __init__(
self,
*,
aiml_api_key: str | None = None,
aiml_base_url: str = "https://api.aimlapi.com/v1",
eleven_api_key: str | None = None,
) -> None:
self._aiml_api_key = aiml_api_key or os.environ["AIML_API_KEY"]
self._aiml_base_url = aiml_base_url
self._aiml_client = OpenAI(api_key=api_key, base_url=self._aiml_base_url)
self._default_narrator_voice = "ALY2WaJPY0oBJlqpQbfW"
self._eleven_api_key = eleven_api_key or os.environ["ELEVEN_API_KEY"]
def annotate_text(self, text: str) -> str:
response = self._send_request_to_llm(messages=[
{
"role": "system",
"content": TEXT_ANNOTATION_PROMPT,
},
{
"role": "user",
"content": text,
}
])
return response["choices"][0]["message"]["content"]
def classify_characters(self, annotated_text: str, unique_characters: list[str]) -> dict:
response = self._send_request_to_llm(
messages=[
{
"role": "system",
"content": CHARACTER_CLASSIFICATION_PROMPT,
},
{
"role": "user",
"content": f"### Story\n\n{annotated_text}\n\n### Characters\n\n{unique_characters}",
},
],
response_format={"type": "json_object"},
)
return json.loads(response["choices"][0]["message"]["content"])
def generate_audio(
self,
annotated_text: str,
character_to_voice: dict[str, str],
*,
chunk_size: int = 1024,
) -> None:
current_character = "narrator"
with open("audiobook.mp3", "wb") as ab:
for line in annotated_text.splitlines():
cleaned_line = line.strip().lower()
if not cleaned_line:
continue
try:
current_character = re.findall(r"\[[\w\s]+\]", cleaned_line)[0][1:-1]
except:
pass
voice_id = character_to_voice[current_character]
character_text = cleaned_line[cleaned_line.rfind("]")+1:].lstrip()
fragment = self._send_request_to_tts(voice_id=voice_id, text=character_text)
for chunk in fragment.iter_content(chunk_size=chunk_size):
if chunk:
ab.write(chunk)
@staticmethod
def get_unique_characters(annotated_text: str) -> list[str]:
characters = set[str]()
for line in annotated_text.splitlines():
cleaned_line = line.strip().lower()
if not cleaned_line.startswith("["):
continue
line_characters = re.findall(r"\[[\w\s]+\]", cleaned_line)
characters = characters.union(ch[1:-1] for ch in line_characters)
return list(characters - {"narrator"})
def map_characters_to_voices(self, character_to_gender: dict[str, str]) -> dict[str, str]:
character_to_voice = {"narrator": self._default_narrator_voice}
# Damy vperyod!
f_characters = [character for character, gender in character_to_gender.items() if gender.strip().lower() == "f"]
if f_characters:
f_voices = VOICES.query("gender == 'female'").iloc[:len(f_characters)].copy()
f_voices["character"] = f_characters
character_to_voice |= f_voices.set_index("character")["voice_id"].to_dict()
m_characters = [character for character, gender in character_to_gender.items() if gender.strip().lower() == "m"]
if m_characters:
m_voices = VOICES.query("gender == 'male'").iloc[:len(m_characters)].copy()
m_voices["character"] = m_characters
character_to_voice |= m_voices.set_index("character")["voice_id"].to_dict()
return character_to_voice
def _send_request_to_llm(self, messages: list[dict], **kwargs) -> dict:
response = requests.post(
url=f"{self._aiml_base_url}/chat/completions",
headers={
"Authorization": f"Bearer {self._aiml_api_key}",
"Content-Type": "application/json",
},
data=json.dumps({
"model": "gpt-4o",
"temperature": 0.0,
"messages": messages,
"stream": False,
"max_tokens": 16_384,
**kwargs,
}),
)
response.raise_for_status()
return response.json()
def _send_request_to_tts(self, voice_id: str, text: str):
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": self._eleven_api_key,
}
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
response = requests.post(url, json=data, headers=headers)
response.raise_for_status()
return response
def parse_pdf(file_path):
"""Parse the PDF file and return the text content."""
loader = PyPDFLoader(file_path)
documents = loader.load()
return "\n".join([doc.page_content for doc in documents])
def respond(text, uploaded_file):
# Check if a file is uploaded
if uploaded_file is not None:
# Save the uploaded file temporarily to check its size
temp_file_path = uploaded_file.name
# Check the file size
if os.path.getsize(temp_file_path) > FILE_SIZE_MAX * 1024 * 1024: # Check if file size is greater than 0.5 MB
error_message = f"Error: The uploaded file exceeds the size limit of {FILE_SIZE_MAX} MB."
return None, error_message # Return None for audio output and the error message
# Determine file type
if uploaded_file.name.endswith('.txt'):
# Read the text from the uploaded .txt file
with open(temp_file_path, 'r', encoding='utf-8') as file:
text = file.read()
elif uploaded_file.name.endswith('.pdf'):
# Parse the PDF file and extract text
text = parse_pdf(temp_file_path)
else:
error_message = "Error: Unsupported file type. Please upload a .txt or .pdf file."
return None, error_message
# Proceed with the audiobook generation
builder = AudiobookBuilder()
annotated_text = builder.annotate_text(text)
unique_characters = builder.get_unique_characters(annotated_text)
character_to_gender = builder.classify_characters(text, unique_characters)
character_to_voice = builder.map_characters_to_voices(character_to_gender)
builder.generate_audio(annotated_text, character_to_voice)
audio, sr = librosa.load("audiobook.mp3", sr=None)
return (sr, audio), None # Return audio and None for error message
def refresh():
return None, None, None # Reset audio output, error message, and uploaded file
with gr.Blocks(title="Audiobooks Generation") as ui:
gr.Markdown("# Audiobooks Generation")
with gr.Row(variant="panel"):
text_input = gr.Textbox(label="Enter the book text", lines=20)
# Add a file upload field for .txt and .pdf files
file_input = gr.File(label="Upload a text file or PDF", file_types=['.txt', '.pdf'])
with gr.Row(variant="panel"):
audio_output = gr.Audio(label="Generated audio", type="numpy")
error_output = gr.Textbox(label="Error Messages", interactive=False, visible=False) # Initially hidden
submit_button = gr.Button("Submit")
submit_button.click(
fn=respond,
inputs=[text_input, file_input], # Include the uploaded file as an input
outputs=[audio_output, error_output], # Include the audio output and error message output
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[audio_output, error_output, file_input] # Reset audio output, error message, and uploaded file
)
# Hide error message dynamically when input is received
text_input.change(
fn=lambda: gr.update(visible=False), # Hide the error field
inputs=[text_input],
outputs=error_output
)
file_input.change(
fn=lambda: gr.update(visible=False), # Hide the error field
inputs=[file_input],
outputs=error_output
)
# To clear error field when refreshing
refresh_button.click(
fn=lambda: gr.update(visible=False), # Hide the error field
inputs=[],
outputs=error_output,
)
ui.launch()
|