Spaces:
Runtime error
Runtime error
File size: 1,338 Bytes
ce10f9a 5b4c169 a3ae69c 4ffc5f1 ce10f9a 07fca4f d43b4cf ce10f9a 604d57b a06cfd4 47f2ac0 49c5437 47f2ac0 d5b1d28 49c5437 d5b1d28 49c5437 1917b0b ce8a810 cc11b4b d5b1d28 ce8a810 d5b1d28 1917b0b a3ae69c d5b1d28 a3ae69c d5b1d28 a3ae69c ce10f9a a3ae69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
import requests
import gradio as gr
api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def analyze_sentiment(text):
output = query({
"inputs": f'''<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
you are a feeling analyser and you'll say only "positive" if i'm feeling positive and "negativ" if i'm feeling sad <|eot_id|>
<|start_header_id|>user<|end_header_id|>
{text}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
'''
})
# Assurez-vous de gérer correctement la sortie de l'API
if isinstance(output, list) and len(output) > 0:
return output[0].get('generated_text', 'Erreur: Réponse inattendue')
if isinstance(output, list) and len(output) > 0:
response = output[0].get('generated_text', '').strip().lower()
if 'positive' in response:
return 'positive'
elif 'negative' in response:
return 'negative'
else:
return "Erreur: Réponse inattendue"
demo = gr.Interface(
fn = query,
inputs=["text"],
outputs=["text"]
)
demo.launch() |