Spaces:
Runtime error
Runtime error
alexander-lazarin
commited on
Commit
Β·
1d8364f
1
Parent(s):
8273d56
Process no more than 10 images at a time
Browse files- Fashion_MVP_v0_0_2.ipynb +57 -52
- app.py +6 -0
Fashion_MVP_v0_0_2.ipynb
CHANGED
@@ -38,25 +38,25 @@
|
|
38 |
"base_uri": "https://localhost:8080/"
|
39 |
},
|
40 |
"id": "Os5BuiF_0kqI",
|
41 |
-
"outputId": "
|
42 |
},
|
43 |
"outputs": [
|
44 |
{
|
45 |
"output_type": "stream",
|
46 |
"name": "stdout",
|
47 |
"text": [
|
48 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m17.1/17.1 MB\u001b[0m \u001b[31m19.
|
49 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m91.9/91.9 kB\u001b[0m \u001b[
|
50 |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
51 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m313.
|
52 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[
|
53 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m144.8/144.8 kB\u001b[0m \u001b[
|
54 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m8.7/8.7 MB\u001b[0m \u001b[
|
55 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m60.8/60.8 kB\u001b[0m \u001b[
|
56 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[
|
57 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.
|
58 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.
|
59 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[
|
60 |
"\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
|
61 |
]
|
62 |
}
|
@@ -73,14 +73,14 @@
|
|
73 |
"base_uri": "https://localhost:8080/"
|
74 |
},
|
75 |
"id": "XJ2uHTD8bE0x",
|
76 |
-
"outputId": "
|
77 |
},
|
78 |
"outputs": [
|
79 |
{
|
80 |
"output_type": "stream",
|
81 |
"name": "stdout",
|
82 |
"text": [
|
83 |
-
"\u001b[?25l \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m0.0/
|
84 |
"\u001b[?25h"
|
85 |
]
|
86 |
}
|
@@ -99,7 +99,7 @@
|
|
99 |
"base_uri": "https://localhost:8080/"
|
100 |
},
|
101 |
"id": "vZ6dU45cr7-a",
|
102 |
-
"outputId": "
|
103 |
},
|
104 |
"execution_count": 3,
|
105 |
"outputs": [
|
@@ -112,7 +112,7 @@
|
|
112 |
"remote: Counting objects: 100% (34/34), done.\u001b[K\n",
|
113 |
"remote: Compressing objects: 100% (26/26), done.\u001b[K\n",
|
114 |
"remote: Total 34 (delta 8), reused 32 (delta 6), pack-reused 0\u001b[K\n",
|
115 |
-
"Receiving objects: 100% (34/34), 1.79 MiB |
|
116 |
"Resolving deltas: 100% (8/8), done.\n"
|
117 |
]
|
118 |
}
|
@@ -128,7 +128,7 @@
|
|
128 |
"base_uri": "https://localhost:8080/"
|
129 |
},
|
130 |
"id": "T69CQRLqsBAj",
|
131 |
-
"outputId": "
|
132 |
},
|
133 |
"execution_count": 4,
|
134 |
"outputs": [
|
@@ -136,10 +136,10 @@
|
|
136 |
"output_type": "stream",
|
137 |
"name": "stdout",
|
138 |
"text": [
|
139 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m157.0/157.0 kB\u001b[0m \u001b[31m2.
|
140 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m199.3/199.3 kB\u001b[0m \u001b[
|
141 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m61.5/61.5 kB\u001b[0m \u001b[
|
142 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m123.2/123.2 kB\u001b[0m \u001b[
|
143 |
"\u001b[?25h"
|
144 |
]
|
145 |
}
|
@@ -332,7 +332,7 @@
|
|
332 |
},
|
333 |
{
|
334 |
"cell_type": "code",
|
335 |
-
"execution_count":
|
336 |
"metadata": {
|
337 |
"id": "gX7FFN4Ocfj3"
|
338 |
},
|
@@ -341,6 +341,9 @@
|
|
341 |
"#|export\n",
|
342 |
"def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):\n",
|
343 |
"\n",
|
|
|
|
|
|
|
344 |
" # global brand_response\n",
|
345 |
"\n",
|
346 |
" # global brand_images_list\n",
|
@@ -371,7 +374,7 @@
|
|
371 |
},
|
372 |
{
|
373 |
"cell_type": "code",
|
374 |
-
"execution_count":
|
375 |
"metadata": {
|
376 |
"id": "yCSpReOxgjcO"
|
377 |
},
|
@@ -380,6 +383,9 @@
|
|
380 |
"#|export\n",
|
381 |
"def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):\n",
|
382 |
"\n",
|
|
|
|
|
|
|
383 |
" # global style_response\n",
|
384 |
"\n",
|
385 |
" # global style_images_list\n",
|
@@ -417,7 +423,7 @@
|
|
417 |
},
|
418 |
{
|
419 |
"cell_type": "code",
|
420 |
-
"execution_count":
|
421 |
"metadata": {
|
422 |
"id": "Xoh8vf36PhOd"
|
423 |
},
|
@@ -530,7 +536,7 @@
|
|
530 |
},
|
531 |
{
|
532 |
"cell_type": "code",
|
533 |
-
"execution_count":
|
534 |
"metadata": {
|
535 |
"id": "9wmX3cjy0eIt"
|
536 |
},
|
@@ -591,60 +597,55 @@
|
|
591 |
},
|
592 |
{
|
593 |
"cell_type": "code",
|
594 |
-
"execution_count":
|
595 |
"metadata": {
|
596 |
"colab": {
|
597 |
"base_uri": "https://localhost:8080/",
|
598 |
-
"height":
|
599 |
},
|
600 |
"id": "5SMuBifpbxmv",
|
601 |
-
"outputId": "
|
602 |
},
|
603 |
"outputs": [
|
604 |
{
|
605 |
-
"metadata": {
|
606 |
-
"tags": null
|
607 |
-
},
|
608 |
-
"name": "stdout",
|
609 |
"output_type": "stream",
|
|
|
610 |
"text": [
|
611 |
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
612 |
"\n",
|
613 |
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
|
614 |
-
"Running on public URL: https://
|
615 |
"\n",
|
616 |
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
617 |
]
|
618 |
},
|
619 |
{
|
|
|
620 |
"data": {
|
621 |
-
"text/html": [
|
622 |
-
"<div><iframe src=\"https://b204be3ae78dd427f9.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
623 |
-
],
|
624 |
"text/plain": [
|
625 |
"<IPython.core.display.HTML object>"
|
|
|
|
|
|
|
626 |
]
|
627 |
},
|
628 |
-
"metadata": {}
|
629 |
-
"output_type": "display_data"
|
630 |
},
|
631 |
{
|
632 |
-
"metadata": {
|
633 |
-
"tags": null
|
634 |
-
},
|
635 |
-
"name": "stdout",
|
636 |
"output_type": "stream",
|
|
|
637 |
"text": [
|
638 |
-
"
|
639 |
-
"\n"
|
640 |
-
"type text2im = ({\n",
|
641 |
-
" size: \"1024x1792\",\n",
|
642 |
-
" prompt: \"Imagine a model in a minimalist, modern pose, embodying the BLCV brand's aesthetic. The model is wearing a tailored denim maxi skirt, featuring a high waist and a front slit, paired with a crisp, white, fitted t-shirt tucked in. The outfit is completed with simple, leather ankle boots. The model's look is accessorized with minimal jewelry, emphasizing a clean and sophisticated style. The background is a simple gradient of white shades, focusing all attention on the outfit and the model's pose. The overall vibe is chic, with a nod to classic denim fashion, updated for a contemporary audience.\",\n",
|
643 |
-
"}) => any;\n",
|
644 |
-
"\n",
|
645 |
-
"}\n",
|
646 |
-
"Imagine a model in a minimalist, modern pose, embodying the BLCV brand's aesthetic. The model is wearing a tailored denim maxi skirt, featuring a high waist and a front slit, paired with a crisp, white, fitted t-shirt tucked in. The outfit is completed with simple, leather ankle boots. The model's look is accessorized with minimal jewelry, emphasizing a clean and sophisticated style. The background is a simple gradient of white shades, focusing all attention on the outfit and the model's pose. The overall vibe is chic, with a nod to classic denim fashion, updated for a contemporary audience.\n"
|
647 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
648 |
}
|
649 |
],
|
650 |
"source": [
|
@@ -657,7 +658,11 @@
|
|
657 |
],
|
658 |
"metadata": {
|
659 |
"colab": {
|
660 |
-
"provenance": []
|
|
|
|
|
|
|
|
|
661 |
},
|
662 |
"kernelspec": {
|
663 |
"display_name": "Python 3",
|
|
|
38 |
"base_uri": "https://localhost:8080/"
|
39 |
},
|
40 |
"id": "Os5BuiF_0kqI",
|
41 |
+
"outputId": "fd709473-ef03-45fd-965c-3a909b9baed7"
|
42 |
},
|
43 |
"outputs": [
|
44 |
{
|
45 |
"output_type": "stream",
|
46 |
"name": "stdout",
|
47 |
"text": [
|
48 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m17.1/17.1 MB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
49 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m91.9/91.9 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
50 |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
51 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m313.6/313.6 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
52 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
53 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m144.8/144.8 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
54 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m8.7/8.7 MB\u001b[0m \u001b[31m42.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
55 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m60.8/60.8 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
56 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
57 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
58 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
59 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
60 |
"\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
|
61 |
]
|
62 |
}
|
|
|
73 |
"base_uri": "https://localhost:8080/"
|
74 |
},
|
75 |
"id": "XJ2uHTD8bE0x",
|
76 |
+
"outputId": "e924facd-a0dc-4ccc-9657-7b21ca5e970f"
|
77 |
},
|
78 |
"outputs": [
|
79 |
{
|
80 |
"output_type": "stream",
|
81 |
"name": "stdout",
|
82 |
"text": [
|
83 |
+
"\u001b[?25l \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m0.0/267.1 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91mβββββββββββββββββββββββββββββ\u001b[0m\u001b[90mβΊ\u001b[0m\u001b[90mββββββββββ\u001b[0m \u001b[32m194.6/267.1 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m267.1/267.1 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
84 |
"\u001b[?25h"
|
85 |
]
|
86 |
}
|
|
|
99 |
"base_uri": "https://localhost:8080/"
|
100 |
},
|
101 |
"id": "vZ6dU45cr7-a",
|
102 |
+
"outputId": "b33ed1e3-10d3-4cd8-f3b0-4b73d770f6e4"
|
103 |
},
|
104 |
"execution_count": 3,
|
105 |
"outputs": [
|
|
|
112 |
"remote: Counting objects: 100% (34/34), done.\u001b[K\n",
|
113 |
"remote: Compressing objects: 100% (26/26), done.\u001b[K\n",
|
114 |
"remote: Total 34 (delta 8), reused 32 (delta 6), pack-reused 0\u001b[K\n",
|
115 |
+
"Receiving objects: 100% (34/34), 1.79 MiB | 5.19 MiB/s, done.\n",
|
116 |
"Resolving deltas: 100% (8/8), done.\n"
|
117 |
]
|
118 |
}
|
|
|
128 |
"base_uri": "https://localhost:8080/"
|
129 |
},
|
130 |
"id": "T69CQRLqsBAj",
|
131 |
+
"outputId": "a68f1758-4c49-4f2b-fe6a-1d89dfc84cee"
|
132 |
},
|
133 |
"execution_count": 4,
|
134 |
"outputs": [
|
|
|
136 |
"output_type": "stream",
|
137 |
"name": "stdout",
|
138 |
"text": [
|
139 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m157.0/157.0 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
140 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m199.3/199.3 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
141 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m61.5/61.5 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
142 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m123.2/123.2 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
143 |
"\u001b[?25h"
|
144 |
]
|
145 |
}
|
|
|
332 |
},
|
333 |
{
|
334 |
"cell_type": "code",
|
335 |
+
"execution_count": 13,
|
336 |
"metadata": {
|
337 |
"id": "gX7FFN4Ocfj3"
|
338 |
},
|
|
|
341 |
"#|export\n",
|
342 |
"def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):\n",
|
343 |
"\n",
|
344 |
+
" if len(files) > 10:\n",
|
345 |
+
" return \"Please use no more than 10 images\"\n",
|
346 |
+
"\n",
|
347 |
" # global brand_response\n",
|
348 |
"\n",
|
349 |
" # global brand_images_list\n",
|
|
|
374 |
},
|
375 |
{
|
376 |
"cell_type": "code",
|
377 |
+
"execution_count": 14,
|
378 |
"metadata": {
|
379 |
"id": "yCSpReOxgjcO"
|
380 |
},
|
|
|
383 |
"#|export\n",
|
384 |
"def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):\n",
|
385 |
"\n",
|
386 |
+
" if len(files) > 10:\n",
|
387 |
+
" return \"Please use no more than 10 images\"\n",
|
388 |
+
"\n",
|
389 |
" # global style_response\n",
|
390 |
"\n",
|
391 |
" # global style_images_list\n",
|
|
|
423 |
},
|
424 |
{
|
425 |
"cell_type": "code",
|
426 |
+
"execution_count": 10,
|
427 |
"metadata": {
|
428 |
"id": "Xoh8vf36PhOd"
|
429 |
},
|
|
|
536 |
},
|
537 |
{
|
538 |
"cell_type": "code",
|
539 |
+
"execution_count": 11,
|
540 |
"metadata": {
|
541 |
"id": "9wmX3cjy0eIt"
|
542 |
},
|
|
|
597 |
},
|
598 |
{
|
599 |
"cell_type": "code",
|
600 |
+
"execution_count": 15,
|
601 |
"metadata": {
|
602 |
"colab": {
|
603 |
"base_uri": "https://localhost:8080/",
|
604 |
+
"height": 660
|
605 |
},
|
606 |
"id": "5SMuBifpbxmv",
|
607 |
+
"outputId": "7813219d-276d-40b4-81e9-0ce468faaf45"
|
608 |
},
|
609 |
"outputs": [
|
610 |
{
|
|
|
|
|
|
|
|
|
611 |
"output_type": "stream",
|
612 |
+
"name": "stdout",
|
613 |
"text": [
|
614 |
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
615 |
"\n",
|
616 |
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
|
617 |
+
"Running on public URL: https://0347ce40842cc0d81b.gradio.live\n",
|
618 |
"\n",
|
619 |
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
620 |
]
|
621 |
},
|
622 |
{
|
623 |
+
"output_type": "display_data",
|
624 |
"data": {
|
|
|
|
|
|
|
625 |
"text/plain": [
|
626 |
"<IPython.core.display.HTML object>"
|
627 |
+
],
|
628 |
+
"text/html": [
|
629 |
+
"<div><iframe src=\"https://0347ce40842cc0d81b.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
630 |
]
|
631 |
},
|
632 |
+
"metadata": {}
|
|
|
633 |
},
|
634 |
{
|
|
|
|
|
|
|
|
|
635 |
"output_type": "stream",
|
636 |
+
"name": "stdout",
|
637 |
"text": [
|
638 |
+
"Keyboard interruption in main thread... closing server.\n",
|
639 |
+
"Killing tunnel 127.0.0.1:7860 <> https://0347ce40842cc0d81b.gradio.live\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
]
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"output_type": "execute_result",
|
644 |
+
"data": {
|
645 |
+
"text/plain": []
|
646 |
+
},
|
647 |
+
"metadata": {},
|
648 |
+
"execution_count": 15
|
649 |
}
|
650 |
],
|
651 |
"source": [
|
|
|
658 |
],
|
659 |
"metadata": {
|
660 |
"colab": {
|
661 |
+
"provenance": [],
|
662 |
+
"collapsed_sections": [
|
663 |
+
"JIg5wmXwfgM4",
|
664 |
+
"umRePYg3cUSy"
|
665 |
+
]
|
666 |
},
|
667 |
"kernelspec": {
|
668 |
"display_name": "Python 3",
|
app.py
CHANGED
@@ -150,6 +150,9 @@ namespace dalle {
|
|
150 |
# %% Fashion_MVP_v0_0_2.ipynb 12
|
151 |
def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):
|
152 |
|
|
|
|
|
|
|
153 |
# global brand_response
|
154 |
|
155 |
# global brand_images_list
|
@@ -180,6 +183,9 @@ def process_brand_images(files, brand_name, style_name, initial_prompt, brand_pr
|
|
180 |
# %% Fashion_MVP_v0_0_2.ipynb 13
|
181 |
def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):
|
182 |
|
|
|
|
|
|
|
183 |
# global style_response
|
184 |
|
185 |
# global style_images_list
|
|
|
150 |
# %% Fashion_MVP_v0_0_2.ipynb 12
|
151 |
def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):
|
152 |
|
153 |
+
if len(files) > 10:
|
154 |
+
return "Please use no more than 10 images"
|
155 |
+
|
156 |
# global brand_response
|
157 |
|
158 |
# global brand_images_list
|
|
|
183 |
# %% Fashion_MVP_v0_0_2.ipynb 13
|
184 |
def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):
|
185 |
|
186 |
+
if len(files) > 10:
|
187 |
+
return "Please use no more than 10 images"
|
188 |
+
|
189 |
# global style_response
|
190 |
|
191 |
# global style_images_list
|