alexander-lazarin commited on
Commit
1d8364f
Β·
1 Parent(s): 8273d56

Process no more than 10 images at a time

Browse files
Files changed (2) hide show
  1. Fashion_MVP_v0_0_2.ipynb +57 -52
  2. app.py +6 -0
Fashion_MVP_v0_0_2.ipynb CHANGED
@@ -38,25 +38,25 @@
38
  "base_uri": "https://localhost:8080/"
39
  },
40
  "id": "Os5BuiF_0kqI",
41
- "outputId": "9c923a49-6f7d-4553-c142-ad2937004f65"
42
  },
43
  "outputs": [
44
  {
45
  "output_type": "stream",
46
  "name": "stdout",
47
  "text": [
48
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.1/17.1 MB\u001b[0m \u001b[31m19.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
49
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m91.9/91.9 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
50
  "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
51
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m313.4/313.4 kB\u001b[0m \u001b[31m23.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
52
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
53
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m144.8/144.8 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
54
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.7/8.7 MB\u001b[0m \u001b[31m40.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
55
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.8/60.8 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
56
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
57
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
58
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
59
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
60
  "\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
61
  ]
62
  }
@@ -73,14 +73,14 @@
73
  "base_uri": "https://localhost:8080/"
74
  },
75
  "id": "XJ2uHTD8bE0x",
76
- "outputId": "13c89046-6a87-4276-e3b4-b8ec7550e18e"
77
  },
78
  "outputs": [
79
  {
80
  "output_type": "stream",
81
  "name": "stdout",
82
  "text": [
83
- "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/266.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91mβ•Έ\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m112.6/266.9 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m266.9/266.9 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
84
  "\u001b[?25h"
85
  ]
86
  }
@@ -99,7 +99,7 @@
99
  "base_uri": "https://localhost:8080/"
100
  },
101
  "id": "vZ6dU45cr7-a",
102
- "outputId": "7eb5a466-03d2-462a-d5e4-4010a1817691"
103
  },
104
  "execution_count": 3,
105
  "outputs": [
@@ -112,7 +112,7 @@
112
  "remote: Counting objects: 100% (34/34), done.\u001b[K\n",
113
  "remote: Compressing objects: 100% (26/26), done.\u001b[K\n",
114
  "remote: Total 34 (delta 8), reused 32 (delta 6), pack-reused 0\u001b[K\n",
115
- "Receiving objects: 100% (34/34), 1.79 MiB | 6.82 MiB/s, done.\n",
116
  "Resolving deltas: 100% (8/8), done.\n"
117
  ]
118
  }
@@ -128,7 +128,7 @@
128
  "base_uri": "https://localhost:8080/"
129
  },
130
  "id": "T69CQRLqsBAj",
131
- "outputId": "bdae9b62-3268-458e-cf9e-48041fda46d5"
132
  },
133
  "execution_count": 4,
134
  "outputs": [
@@ -136,10 +136,10 @@
136
  "output_type": "stream",
137
  "name": "stdout",
138
  "text": [
139
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.0/157.0 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
140
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.3/199.3 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
141
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.5/61.5 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
142
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m123.2/123.2 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
143
  "\u001b[?25h"
144
  ]
145
  }
@@ -332,7 +332,7 @@
332
  },
333
  {
334
  "cell_type": "code",
335
- "execution_count": 20,
336
  "metadata": {
337
  "id": "gX7FFN4Ocfj3"
338
  },
@@ -341,6 +341,9 @@
341
  "#|export\n",
342
  "def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):\n",
343
  "\n",
 
 
 
344
  " # global brand_response\n",
345
  "\n",
346
  " # global brand_images_list\n",
@@ -371,7 +374,7 @@
371
  },
372
  {
373
  "cell_type": "code",
374
- "execution_count": 21,
375
  "metadata": {
376
  "id": "yCSpReOxgjcO"
377
  },
@@ -380,6 +383,9 @@
380
  "#|export\n",
381
  "def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):\n",
382
  "\n",
 
 
 
383
  " # global style_response\n",
384
  "\n",
385
  " # global style_images_list\n",
@@ -417,7 +423,7 @@
417
  },
418
  {
419
  "cell_type": "code",
420
- "execution_count": 22,
421
  "metadata": {
422
  "id": "Xoh8vf36PhOd"
423
  },
@@ -530,7 +536,7 @@
530
  },
531
  {
532
  "cell_type": "code",
533
- "execution_count": 23,
534
  "metadata": {
535
  "id": "9wmX3cjy0eIt"
536
  },
@@ -591,60 +597,55 @@
591
  },
592
  {
593
  "cell_type": "code",
594
- "execution_count": null,
595
  "metadata": {
596
  "colab": {
597
  "base_uri": "https://localhost:8080/",
598
- "height": 802
599
  },
600
  "id": "5SMuBifpbxmv",
601
- "outputId": "6677bde0-7eb3-4a45-c1c4-7751658f25ed"
602
  },
603
  "outputs": [
604
  {
605
- "metadata": {
606
- "tags": null
607
- },
608
- "name": "stdout",
609
  "output_type": "stream",
 
610
  "text": [
611
  "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
612
  "\n",
613
  "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
614
- "Running on public URL: https://b204be3ae78dd427f9.gradio.live\n",
615
  "\n",
616
  "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
617
  ]
618
  },
619
  {
 
620
  "data": {
621
- "text/html": [
622
- "<div><iframe src=\"https://b204be3ae78dd427f9.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
623
- ],
624
  "text/plain": [
625
  "<IPython.core.display.HTML object>"
 
 
 
626
  ]
627
  },
628
- "metadata": {},
629
- "output_type": "display_data"
630
  },
631
  {
632
- "metadata": {
633
- "tags": null
634
- },
635
- "name": "stdout",
636
  "output_type": "stream",
 
637
  "text": [
638
- "namespace dalle {\n",
639
- "\n",
640
- "type text2im = ({\n",
641
- " size: \"1024x1792\",\n",
642
- " prompt: \"Imagine a model in a minimalist, modern pose, embodying the BLCV brand's aesthetic. The model is wearing a tailored denim maxi skirt, featuring a high waist and a front slit, paired with a crisp, white, fitted t-shirt tucked in. The outfit is completed with simple, leather ankle boots. The model's look is accessorized with minimal jewelry, emphasizing a clean and sophisticated style. The background is a simple gradient of white shades, focusing all attention on the outfit and the model's pose. The overall vibe is chic, with a nod to classic denim fashion, updated for a contemporary audience.\",\n",
643
- "}) => any;\n",
644
- "\n",
645
- "}\n",
646
- "Imagine a model in a minimalist, modern pose, embodying the BLCV brand's aesthetic. The model is wearing a tailored denim maxi skirt, featuring a high waist and a front slit, paired with a crisp, white, fitted t-shirt tucked in. The outfit is completed with simple, leather ankle boots. The model's look is accessorized with minimal jewelry, emphasizing a clean and sophisticated style. The background is a simple gradient of white shades, focusing all attention on the outfit and the model's pose. The overall vibe is chic, with a nod to classic denim fashion, updated for a contemporary audience.\n"
647
  ]
 
 
 
 
 
 
 
 
648
  }
649
  ],
650
  "source": [
@@ -657,7 +658,11 @@
657
  ],
658
  "metadata": {
659
  "colab": {
660
- "provenance": []
 
 
 
 
661
  },
662
  "kernelspec": {
663
  "display_name": "Python 3",
 
38
  "base_uri": "https://localhost:8080/"
39
  },
40
  "id": "Os5BuiF_0kqI",
41
+ "outputId": "fd709473-ef03-45fd-965c-3a909b9baed7"
42
  },
43
  "outputs": [
44
  {
45
  "output_type": "stream",
46
  "name": "stdout",
47
  "text": [
48
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.1/17.1 MB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
49
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m91.9/91.9 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
50
  "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
51
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m313.6/313.6 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
52
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
53
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m144.8/144.8 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
54
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.7/8.7 MB\u001b[0m \u001b[31m42.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
55
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.8/60.8 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
56
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
57
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
58
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
59
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
60
  "\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
61
  ]
62
  }
 
73
  "base_uri": "https://localhost:8080/"
74
  },
75
  "id": "XJ2uHTD8bE0x",
76
+ "outputId": "e924facd-a0dc-4ccc-9657-7b21ca5e970f"
77
  },
78
  "outputs": [
79
  {
80
  "output_type": "stream",
81
  "name": "stdout",
82
  "text": [
83
+ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/267.1 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90mβ•Ί\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m194.6/267.1 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m267.1/267.1 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
84
  "\u001b[?25h"
85
  ]
86
  }
 
99
  "base_uri": "https://localhost:8080/"
100
  },
101
  "id": "vZ6dU45cr7-a",
102
+ "outputId": "b33ed1e3-10d3-4cd8-f3b0-4b73d770f6e4"
103
  },
104
  "execution_count": 3,
105
  "outputs": [
 
112
  "remote: Counting objects: 100% (34/34), done.\u001b[K\n",
113
  "remote: Compressing objects: 100% (26/26), done.\u001b[K\n",
114
  "remote: Total 34 (delta 8), reused 32 (delta 6), pack-reused 0\u001b[K\n",
115
+ "Receiving objects: 100% (34/34), 1.79 MiB | 5.19 MiB/s, done.\n",
116
  "Resolving deltas: 100% (8/8), done.\n"
117
  ]
118
  }
 
128
  "base_uri": "https://localhost:8080/"
129
  },
130
  "id": "T69CQRLqsBAj",
131
+ "outputId": "a68f1758-4c49-4f2b-fe6a-1d89dfc84cee"
132
  },
133
  "execution_count": 4,
134
  "outputs": [
 
136
  "output_type": "stream",
137
  "name": "stdout",
138
  "text": [
139
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.0/157.0 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
140
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.3/199.3 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
141
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.5/61.5 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
142
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m123.2/123.2 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
143
  "\u001b[?25h"
144
  ]
145
  }
 
332
  },
333
  {
334
  "cell_type": "code",
335
+ "execution_count": 13,
336
  "metadata": {
337
  "id": "gX7FFN4Ocfj3"
338
  },
 
341
  "#|export\n",
342
  "def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):\n",
343
  "\n",
344
+ " if len(files) > 10:\n",
345
+ " return \"Please use no more than 10 images\"\n",
346
+ "\n",
347
  " # global brand_response\n",
348
  "\n",
349
  " # global brand_images_list\n",
 
374
  },
375
  {
376
  "cell_type": "code",
377
+ "execution_count": 14,
378
  "metadata": {
379
  "id": "yCSpReOxgjcO"
380
  },
 
383
  "#|export\n",
384
  "def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):\n",
385
  "\n",
386
+ " if len(files) > 10:\n",
387
+ " return \"Please use no more than 10 images\"\n",
388
+ "\n",
389
  " # global style_response\n",
390
  "\n",
391
  " # global style_images_list\n",
 
423
  },
424
  {
425
  "cell_type": "code",
426
+ "execution_count": 10,
427
  "metadata": {
428
  "id": "Xoh8vf36PhOd"
429
  },
 
536
  },
537
  {
538
  "cell_type": "code",
539
+ "execution_count": 11,
540
  "metadata": {
541
  "id": "9wmX3cjy0eIt"
542
  },
 
597
  },
598
  {
599
  "cell_type": "code",
600
+ "execution_count": 15,
601
  "metadata": {
602
  "colab": {
603
  "base_uri": "https://localhost:8080/",
604
+ "height": 660
605
  },
606
  "id": "5SMuBifpbxmv",
607
+ "outputId": "7813219d-276d-40b4-81e9-0ce468faaf45"
608
  },
609
  "outputs": [
610
  {
 
 
 
 
611
  "output_type": "stream",
612
+ "name": "stdout",
613
  "text": [
614
  "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
615
  "\n",
616
  "Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
617
+ "Running on public URL: https://0347ce40842cc0d81b.gradio.live\n",
618
  "\n",
619
  "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
620
  ]
621
  },
622
  {
623
+ "output_type": "display_data",
624
  "data": {
 
 
 
625
  "text/plain": [
626
  "<IPython.core.display.HTML object>"
627
+ ],
628
+ "text/html": [
629
+ "<div><iframe src=\"https://0347ce40842cc0d81b.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
630
  ]
631
  },
632
+ "metadata": {}
 
633
  },
634
  {
 
 
 
 
635
  "output_type": "stream",
636
+ "name": "stdout",
637
  "text": [
638
+ "Keyboard interruption in main thread... closing server.\n",
639
+ "Killing tunnel 127.0.0.1:7860 <> https://0347ce40842cc0d81b.gradio.live\n"
 
 
 
 
 
 
 
640
  ]
641
+ },
642
+ {
643
+ "output_type": "execute_result",
644
+ "data": {
645
+ "text/plain": []
646
+ },
647
+ "metadata": {},
648
+ "execution_count": 15
649
  }
650
  ],
651
  "source": [
 
658
  ],
659
  "metadata": {
660
  "colab": {
661
+ "provenance": [],
662
+ "collapsed_sections": [
663
+ "JIg5wmXwfgM4",
664
+ "umRePYg3cUSy"
665
+ ]
666
  },
667
  "kernelspec": {
668
  "display_name": "Python 3",
app.py CHANGED
@@ -150,6 +150,9 @@ namespace dalle {
150
  # %% Fashion_MVP_v0_0_2.ipynb 12
151
  def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):
152
 
 
 
 
153
  # global brand_response
154
 
155
  # global brand_images_list
@@ -180,6 +183,9 @@ def process_brand_images(files, brand_name, style_name, initial_prompt, brand_pr
180
  # %% Fashion_MVP_v0_0_2.ipynb 13
181
  def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):
182
 
 
 
 
183
  # global style_response
184
 
185
  # global style_images_list
 
150
  # %% Fashion_MVP_v0_0_2.ipynb 12
151
  def process_brand_images(files, brand_name, style_name, initial_prompt, brand_prompt):
152
 
153
+ if len(files) > 10:
154
+ return "Please use no more than 10 images"
155
+
156
  # global brand_response
157
 
158
  # global brand_images_list
 
183
  # %% Fashion_MVP_v0_0_2.ipynb 13
184
  def process_style_images(files, brand_name, style_name, initial_prompt, brand_prompt, brand_response, style_prompt):
185
 
186
+ if len(files) > 10:
187
+ return "Please use no more than 10 images"
188
+
189
  # global style_response
190
 
191
  # global style_images_list