File size: 17,756 Bytes
1ef58ee
 
 
 
 
 
 
 
 
 
 
d05d9d8
3baf99a
 
 
 
b1d592c
 
3baf99a
 
 
 
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3baf99a
 
 
1ef58ee
c878c57
1ef58ee
 
c878c57
1ef58ee
c878c57
1ef58ee
 
d05d9d8
1ef58ee
d05d9d8
 
 
 
 
76e4363
 
1ef58ee
 
 
 
 
 
76e4363
1ef58ee
 
c878c57
1ef58ee
 
3e57038
1ef58ee
76e4363
1ef58ee
 
 
 
 
76e4363
1ef58ee
76e4363
1ef58ee
 
 
 
 
 
 
 
76e4363
 
 
 
 
1ef58ee
 
 
bd0b666
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd0b666
 
 
1ef58ee
 
 
 
 
 
bd0b666
 
1ef58ee
 
 
 
 
 
bd0b666
 
 
 
 
 
1ef58ee
bd0b666
 
 
 
1ef58ee
 
9b382e3
 
 
 
 
 
 
 
 
 
d05d9d8
9b382e3
1ef58ee
 
d05d9d8
 
 
 
 
 
 
 
 
 
 
 
 
1ef58ee
 
bd0b666
 
 
1ef58ee
 
bd0b666
 
 
 
 
 
 
7b43a09
 
bd0b666
 
 
1ef58ee
 
 
 
 
 
3baf99a
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3baf99a
 
 
 
 
 
bd0b666
 
 
 
 
 
 
 
 
3baf99a
 
 
 
 
1ef58ee
 
 
 
 
 
 
 
9b382e3
 
 
 
 
 
1ef58ee
 
 
 
 
 
 
 
8b5abf6
 
1ef58ee
76e4363
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
76e4363
 
 
 
 
 
1ef58ee
 
 
 
 
76e4363
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76e4363
 
 
 
1ef58ee
 
3baf99a
 
1ef58ee
 
3baf99a
 
 
 
 
 
 
 
 
c6e4690
 
 
3baf99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b382e3
3baf99a
 
 
 
 
1ef58ee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""Script to produce radial plots."""

from functools import partial
import plotly.graph_objects as go
import json
import numpy as np
from collections import defaultdict
import pandas as pd
from pydantic import BaseModel
import gradio as gr
import requests
import random
import logging
import datetime as dt


fmt = "%(asctime)s [%(levelname)s] <%(name)s> %(message)s"
logging.basicConfig(level=logging.INFO, format=fmt)
logger = logging.getLogger("radial_plot_generator")


UPDATE_FREQUENCY_MINUTES = 30


class Task(BaseModel):
    """Class to hold task information."""

    name: str
    metric: str

    def __hash__(self):
        return hash(self.name)


class Language(BaseModel):
    """Class to hold language information."""

    code: str
    name: str

    def __hash__(self):
        return hash(self.code)


class Dataset(BaseModel):
    """Class to hold dataset information."""

    name: str
    language: Language
    task: Task

    def __hash__(self):
        return hash(self.name)


TEXT_CLASSIFICATION = Task(name="text classification", metric="mcc")
INFORMATION_EXTRACTION = Task(name="information extraction", metric="micro_f1_no_misc")
GRAMMAR = Task(name="grammar", metric="mcc")
QUESTION_ANSWERING = Task(name="question answering", metric="em")
SUMMARISATION = Task(name="summarisation", metric="bertscore")
KNOWLEDGE = Task(name="knowledge", metric="mcc")
REASONING = Task(name="reasoning", metric="mcc")
ALL_TASKS = [obj for obj in globals().values() if isinstance(obj, Task)]

DANISH = Language(code="da", name="Danish")
NORWEGIAN = Language(code="no", name="Norwegian")
SWEDISH = Language(code="sv", name="Swedish")
ICELANDIC = Language(code="is", name="Icelandic")
FAROESE = Language(code="fo", name="Faroese")
GERMAN = Language(code="de", name="German")
DUTCH = Language(code="nl", name="Dutch")
ENGLISH = Language(code="en", name="English")
ALL_LANGUAGES = {
    obj.name: obj for obj in globals().values() if isinstance(obj, Language)
}

DATASETS = [
    Dataset(name="swerec", language=SWEDISH, task=TEXT_CLASSIFICATION),
    Dataset(name="angry-tweets", language=DANISH, task=TEXT_CLASSIFICATION),
    Dataset(name="norec", language=NORWEGIAN, task=TEXT_CLASSIFICATION),
    Dataset(name="sb10k", language=GERMAN, task=TEXT_CLASSIFICATION),
    Dataset(name="dutch-social", language=DUTCH, task=TEXT_CLASSIFICATION),
    Dataset(name="sst5", language=ENGLISH, task=TEXT_CLASSIFICATION),
    Dataset(name="suc3", language=SWEDISH, task=INFORMATION_EXTRACTION),
    Dataset(name="dansk", language=DANISH, task=INFORMATION_EXTRACTION),
    Dataset(name="norne-nb", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
    Dataset(name="norne-nn", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
    Dataset(name="mim-gold-ner", language=ICELANDIC, task=INFORMATION_EXTRACTION),
    Dataset(name="fone", language=FAROESE, task=INFORMATION_EXTRACTION),
    Dataset(name="germeval", language=GERMAN, task=INFORMATION_EXTRACTION),
    Dataset(name="conll-nl", language=DUTCH, task=INFORMATION_EXTRACTION),
    Dataset(name="conll-en", language=ENGLISH, task=INFORMATION_EXTRACTION),
    Dataset(name="scala-sv", language=SWEDISH, task=GRAMMAR),
    Dataset(name="scala-da", language=DANISH, task=GRAMMAR),
    Dataset(name="scala-nb", language=NORWEGIAN, task=GRAMMAR),
    Dataset(name="scala-nn", language=NORWEGIAN, task=GRAMMAR),
    Dataset(name="scala-is", language=ICELANDIC, task=GRAMMAR),
    Dataset(name="scala-fo", language=FAROESE, task=GRAMMAR),
    Dataset(name="scala-de", language=GERMAN, task=GRAMMAR),
    Dataset(name="scala-nl", language=DUTCH, task=GRAMMAR),
    Dataset(name="scala-en", language=ENGLISH, task=GRAMMAR),
    Dataset(name="scandiqa-da", language=DANISH, task=QUESTION_ANSWERING),
    Dataset(name="norquad", language=NORWEGIAN, task=QUESTION_ANSWERING),
    Dataset(name="scandiqa-sv", language=SWEDISH, task=QUESTION_ANSWERING),
    Dataset(name="nqii", language=ICELANDIC, task=QUESTION_ANSWERING),
    Dataset(name="germanquad", language=GERMAN, task=QUESTION_ANSWERING),
    Dataset(name="squad", language=ENGLISH, task=QUESTION_ANSWERING),
    Dataset(name="squad-nl", language=DUTCH, task=QUESTION_ANSWERING),
    Dataset(name="nordjylland-news", language=DANISH, task=SUMMARISATION),
    Dataset(name="mlsum", language=GERMAN, task=SUMMARISATION),
    Dataset(name="rrn", language=ICELANDIC, task=SUMMARISATION),
    Dataset(name="no-sammendrag", language=NORWEGIAN, task=SUMMARISATION),
    Dataset(name="wiki-lingua-nl", language=DUTCH, task=SUMMARISATION),
    Dataset(name="swedn", language=SWEDISH, task=SUMMARISATION),
    Dataset(name="cnn-dailymail", language=ENGLISH, task=SUMMARISATION),
    Dataset(name="mmlu-da", language=DANISH, task=KNOWLEDGE),
    Dataset(name="mmlu-no", language=NORWEGIAN, task=KNOWLEDGE),
    Dataset(name="mmlu-sv", language=SWEDISH, task=KNOWLEDGE),
    Dataset(name="mmlu-is", language=ICELANDIC, task=KNOWLEDGE),
    Dataset(name="mmlu-de", language=GERMAN, task=KNOWLEDGE),
    Dataset(name="mmlu-nl", language=DUTCH, task=KNOWLEDGE),
    Dataset(name="mmlu", language=ENGLISH, task=KNOWLEDGE),
    Dataset(name="arc-da", language=DANISH, task=KNOWLEDGE),
    Dataset(name="arc-no", language=NORWEGIAN, task=KNOWLEDGE),
    Dataset(name="arc-sv", language=SWEDISH, task=KNOWLEDGE),
    Dataset(name="arc-is", language=ICELANDIC, task=KNOWLEDGE),
    Dataset(name="arc-de", language=GERMAN, task=KNOWLEDGE),
    Dataset(name="arc-nl", language=DUTCH, task=KNOWLEDGE),
    Dataset(name="arc", language=ENGLISH, task=KNOWLEDGE),
    Dataset(name="hellaswag-da", language=DANISH, task=REASONING),
    Dataset(name="hellaswag-no", language=NORWEGIAN, task=REASONING),
    Dataset(name="hellaswag-sv", language=SWEDISH, task=REASONING),
    Dataset(name="hellaswag-is", language=ICELANDIC, task=REASONING),
    Dataset(name="hellaswag-de", language=GERMAN, task=REASONING),
    Dataset(name="hellaswag-nl", language=DUTCH, task=REASONING),
    Dataset(name="hellaswag", language=ENGLISH, task=REASONING),
]


def main() -> None:
    """Produce a radial plot."""

    global last_fetch
    results_dfs = fetch_results()
    last_fetch = dt.datetime.now()

    all_languages = [
        language.name for language in ALL_LANGUAGES.values()
    ]
    danish_models = list({
        model_id
        for model_id in results_dfs[DANISH].index
    })

    with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
        gr.Markdown("# Radial Plot Generator")
        gr.Markdown(
            "This demo allows you to generate a radial plot comparing the performance "
            "of different language models on different tasks. It is based on the "
            "generative results from the [ScandEval benchmark](https://scandeval.com)."
        )
        with gr.Column():
            with gr.Row():
                language_names_dropdown = gr.Dropdown(
                    choices=all_languages,
                    multiselect=True,
                    label="Languages",
                    value=["Danish"],
                    interactive=True,
                    scale=2,
                )
                model_ids_dropdown = gr.Dropdown(
                    choices=danish_models,
                    multiselect=True,
                    label="Models",
                    value=["gpt-4-0613", "mistralai/Mistral-7B-v0.1"],
                    interactive=True,
                    scale=2,
                )
                use_win_ratio_checkbox = gr.Checkbox(
                    label="Compare models with win ratios (as opposed to raw scores)",
                    value=True,
                    interactive=True,
                    scale=1,
                )
            with gr.Row():
                plot = gr.Plot(
                    value=produce_radial_plot(
                        model_ids_dropdown.value,
                        language_names=language_names_dropdown.value,
                        use_win_ratio=use_win_ratio_checkbox.value,
                        results_dfs=results_dfs,
                    ),
                )
            with gr.Row():
                gr.Markdown(
                    "<center>Made with ❤️ by the <a href=\"https://alexandra.dk\">"
                    "Alexandra Institute</a>.</center>"
                )

        language_names_dropdown.change(
            fn=partial(update_model_ids_dropdown, results_dfs=results_dfs),
            inputs=[language_names_dropdown, model_ids_dropdown],
            outputs=model_ids_dropdown,
        )

        # Update plot when anything changes
        language_names_dropdown.change(
            fn=partial(produce_radial_plot, results_dfs=results_dfs),
            inputs=[
                model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
            ],
            outputs=plot,
        )
        model_ids_dropdown.change(
            fn=partial(produce_radial_plot, results_dfs=results_dfs),
            inputs=[
                model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
            ],
            outputs=plot,
        )
        use_win_ratio_checkbox.change(
            fn=partial(produce_radial_plot, results_dfs=results_dfs),
            inputs=[
                model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
            ],
            outputs=plot,
        )

    demo.launch()


def update_model_ids_dropdown(
    language_names: list[str],
    model_ids: list[str],
    results_dfs: dict[Language, pd.DataFrame] | None,
) -> dict:
    """When the language names are updated, update the model ids dropdown.

    Args:
        language_names:
            The names of the languages to include in the plot.
        model_ids:
            The ids of the models to include in the plot.
        results_dfs:
            The results dataframes for each language.

    Returns:
        The Gradio update to the model ids dropdown.
    """
    global last_fetch
    minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
    if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
        results_dfs = fetch_results()
        last_fetch = dt.datetime.now()

    if results_dfs is None or len(language_names) == 0:
        if results_dfs is None:
            logger.info("No results fetched yet. Resetting model ids dropdown.")
        else:
            logger.info("No languages selected. Resetting model ids dropdown.")
        return gr.update(choices=[], value=[])

    tasks = [
        task
        for task in ALL_TASKS
        if all(
            task in df.columns
            for language, df in results_dfs.items()
            if language.name in language_names
        )
    ]

    filtered_results_dfs = {
        language: df[tasks]
        for language, df in results_dfs.items()
        if language.name in language_names
    }

    unique_models = {
        model_id
        for df in filtered_results_dfs.values()
        for model_id in df.index
    }

    filtered_models = [
        model_id
        for model_id in unique_models
        if all(model_id in df.index for df in filtered_results_dfs.values())
    ]

    if len(filtered_models) == 0:
        logger.info(
            "No valid models for the selected languages. Resetting model ids dropdown."
        )
        return gr.update(choices=[], value=[])

    valid_selected_models = [
        model_id for model_id in model_ids if model_id in filtered_models
    ]
    if not valid_selected_models:
        valid_selected_models = random.sample(filtered_models, k=1)

    logger.info(
        f"Updated model ids dropdown with {len(filtered_models):,} valid models for "
        f"the selected languages, with {valid_selected_models} selected."
    )

    return gr.update(choices=filtered_models, value=valid_selected_models)


def produce_radial_plot(
    model_ids: list[str],
    language_names: list[str],
    use_win_ratio: bool,
    results_dfs: dict[Language, pd.DataFrame] | None,
) -> go.Figure:
    """Produce a radial plot as a plotly figure.

    Args:
        model_ids:
            The ids of the models to include in the plot.
        language_names:
            The names of the languages to include in the plot.
        use_win_ratio:
            Whether to use win ratios (as opposed to raw scores).
        results_dfs:
            The results dataframes for each language.

    Returns:
        A plotly figure.
    """
    global last_fetch
    minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
    if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
        results_dfs = fetch_results()
        last_fetch = dt.datetime.now()

    if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
        if results_dfs is None:
            logger.info("No results fetched yet. Resetting plot.")
        elif len(language_names) == 0:
            logger.info("No languages selected. Resetting plot.")
        else:
            logger.info("No models selected. Resetting plot.")
        return go.Figure()

    logger.info(
        f"Producing radial plot for models {model_ids!r} on languages "
        f"{language_names!r}..."
    )

    languages = [ALL_LANGUAGES[language_name] for language_name in language_names]

    results_dfs_filtered = {
        language: df
        for language, df in results_dfs.items()
        if language.name in language_names
    }

    tasks = [
        task
        for task in ALL_TASKS
        if all(task in df.columns for df in results_dfs_filtered.values())
    ]

    # Add all the evaluation results for each model
    results: list[list[float]] = list()
    for model_id in model_ids:
        result_list = list()
        for task in tasks:
            win_ratios = list()
            scores = list()
            for language in languages:
                if model_id not in results_dfs_filtered[language].index:
                    continue
                score = results_dfs_filtered[language].loc[model_id][task]
                win_ratio = 100 * np.mean([
                    score >= other_score
                    for other_score in results_dfs_filtered[language][task].dropna()
                ])
                win_ratios.append(win_ratio)
                scores.append(score)
            if use_win_ratio:
                result_list.append(np.mean(win_ratios))
            else:
                result_list.append(np.mean(scores))
        results.append(result_list)

    # Add the results to a plotly figure
    fig = go.Figure()
    for model_id, result_list in zip(model_ids, results):

        # Generate colour for model, as an RGB triplet. The same model will always
        # have the same colour
        random.seed(model_id)
        r, g, b = tuple(random.randint(0, 255) for _ in range(3))

        fig.add_trace(go.Scatterpolar(
            r=result_list,
            theta=[task.name for task in tasks],
            fill='toself',
            name=model_id,
            line=dict(color=f'rgb({r}, {g}, {b})'),
        ))

    languages_str = ""
    if len(languages) > 1:
        languages_str = ", ".join([language.name for language in languages[:-1]])
        languages_str += " and "
    languages_str += languages[-1].name

    if use_win_ratio:
        title = f'Win Ratio on on {languages_str} Language Tasks'
    else:
        title = f'LLM Score on on {languages_str} Language Tasks'

    # Builds the radial plot from the results
    fig.update_layout(
        polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
        showlegend=True,
        title=title,
        width=800,
    )

    logger.info("Successfully produced radial plot.")

    return fig

def fetch_results() -> dict[Language, pd.DataFrame]:
    """Fetch the results from the ScandEval benchmark.

    Returns:
        A dictionary of languages -> results-dataframes, whose indices are the
        models and columns are the tasks.
    """
    logger.info("Fetching results from ScandEval benchmark...")

    response = requests.get(
        "https://www.scandeval.com/scandeval_benchmark_results.jsonl"
    )
    response.raise_for_status()
    records = [
        json.loads(dct_str)
        for dct_str in response.text.split("\n")
        if dct_str.strip("\n")
    ]

    # Build a dictionary of languages -> results-dataframes, whose indices are the
    # models and columns are the tasks.
    results_dfs = dict()
    for language in {dataset.language for dataset in DATASETS}:
        possible_dataset_names = {
            dataset.name for dataset in DATASETS if dataset.language == language
        }
        data_dict = defaultdict(dict)
        for record in records:
            model_name = record["model"]
            dataset_name = record["dataset"]
            if dataset_name in possible_dataset_names:
                dataset = next(
                    dataset for dataset in DATASETS if dataset.name == dataset_name
                )
                results_dict = record['results']['total']
                score = results_dict.get(
                    f"test_{dataset.task.metric}", results_dict.get(dataset.task.metric)
                )
                if dataset.task in data_dict[model_name]:
                    data_dict[model_name][dataset.task].append(score)
                else:
                    data_dict[model_name][dataset.task] = [score]
        results_df = pd.DataFrame(data_dict).T.map(
            lambda list_or_nan:
            np.mean(list_or_nan) if list_or_nan == list_or_nan else list_or_nan
        ).dropna()
        results_dfs[language] = results_df

    logger.info("Successfully fetched results from ScandEval benchmark.")

    return results_dfs

if __name__ == "__main__":
    main()