File size: 29,627 Bytes
89457ed af937f5 063f2a2 204683a 27b2a14 b6b95fd 6868a66 b6b95fd af937f5 063f2a2 edd880f 063f2a2 1b7141c 1461b21 0f079ae 73ae7b2 063f2a2 16b7808 a3847a3 063f2a2 f8ce324 0ddfcd1 2e4f369 063f2a2 af937f5 063f2a2 2b9c89c 5c4777a 2b9c89c 5c4777a 0b4bbfa 063f2a2 5c4777a 2e4f369 063f2a2 5c4777a b335f8c 063f2a2 b335f8c 063f2a2 5c4777a 063f2a2 18d9524 47a5e53 41b540b 0fc5c2f 18d9524 ab6c181 5c4777a 9156bad 41b540b 063f2a2 5c4777a 8de518d 063f2a2 196a645 5c4777a d049b0a df562c0 68cf40f 9519de3 2b00953 ab6c181 f4b3ea4 063f2a2 701644a ec9687d 764dc40 97ad75d ddcfdbf 97ad75d 038542f ab6c181 ddcfdbf ada41ab 2ff2fc8 701644a 40f9ca5 0fc5c2f 18d9524 2b9c89c 5c4777a 27b2a14 a3847a3 6d807e8 2dd03bf a3847a3 a5559e0 2b4adb2 a5559e0 6d807e8 a447bbc a3847a3 196a645 e79aa48 edd880f e79aa48 196a645 27b2a14 5c4777a 063f2a2 f0634d5 196a645 063f2a2 e79aa48 196a645 063f2a2 60f8be0 8de518d 063f2a2 8de518d 063f2a2 9519de3 196a645 063f2a2 196a645 063f2a2 196a645 f0634d5 063f2a2 5c4777a 063f2a2 611fabf fd8594f 063f2a2 d049b0a fd8594f 16b7808 5c4777a 063f2a2 5c4777a d049b0a fd8594f d049b0a 73ae7b2 08efd79 73ae7b2 fd8594f 16b7808 9479f46 16b7808 063f2a2 5c4777a 063f2a2 5c4777a 063f2a2 5c4777a 063f2a2 5b0f25f f96ce19 76669be 5b0f25f 9479f46 5b0f25f f96ce19 555c5b0 1b7141c 555c5b0 5b0f25f 5c4777a 1b2abae 925ec4a 1b2abae 925ec4a 1b2abae 6d807e8 a3847a3 12b7a74 1c79a7c ce6fec1 d40a063 5b0f25f 40f9ca5 6d807e8 f96ce19 e776b9f f96ce19 555c5b0 428c948 5b0f25f d40a063 063f2a2 2ff2fc8 d8dd36b 066c598 0fc5c2f 2e09900 4dae39e 50f03c4 6d807e8 5fc6d5a 40f9ca5 d58126c d8dd36b f677869 d8dd36b d58126c 16b7808 5c4777a da09491 4e21196 1c79a7c 5b0f25f 063f2a2 5b0f25f 063f2a2 6d807e8 066c598 0fc5c2f 5b0f25f 063f2a2 27b2a14 6d807e8 066c598 6389fb0 50f03c4 066c598 6d807e8 f4e05be 5b0f25f eb31b4b 61853f8 dab86e5 5bf144f a3847a3 5bf144f 0268abc f70118e a3847a3 e6365e6 a3847a3 46bfb77 2b4adb2 a3847a3 b556df1 a3847a3 01346e3 a3847a3 f8ce324 a3847a3 12b7a74 a3847a3 d40a063 a3847a3 6d807e8 7d4c562 a3847a3 38332fb 2b4adb2 6d807e8 a3847a3 e6365e6 a3847a3 5bf144f 45f8b93 e776b9f a734406 ddb0409 552d344 74241c4 5bf144f 0268abc e223a8d 0fa95f9 eb31b4b 5b0f25f 57402ef 9a2741c dab86e5 96e5ea2 0268abc 05ed685 a3847a3 05ed685 a3847a3 0268abc b882d5a 0268abc b882d5a 0268abc b882d5a 0268abc a3847a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
import requests
import os, sys, json
import gradio as gr
import openai
from openai import OpenAI
import time
import re
import io
from PIL import Image, ImageDraw, ImageOps, ImageFont
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.schema import AIMessage, HumanMessage
from langchain.llms import HuggingFaceHub
from langchain.llms import HuggingFaceTextGenInference
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from chromadb.errors import InvalidDimensionException
from utils import *
from beschreibungen import *
#from langchain.vectorstores import MongoDBAtlasVectorSearch
#from pymongo import MongoClient
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
###############################################
#globale Variablen
##############################################
#nur bei ersten Anfrage splitten der Dokumente - um die Vektordatenbank entsprechend zu füllen
splittet = False
##################################################
#Für MongoDB statt Chroma als Vektorstore
#MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
#client = MongoClient(MONGODB_URI)
#MONGODB_DB_NAME = "langchain_db"
#MONGODB_COLLECTION_NAME = "gpt-4"
#MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
#MONGODB_INDEX_NAME = "default"
#################################################
#Prompt Zusätze
template = """Antworte in deutsch, wenn es nicht explizit anders gefordert wird. Wenn du die Antwort nicht kennst, antworte einfach, dass du es nicht weißt. Versuche nicht, die Antwort zu erfinden oder aufzumocken. Halte die Antwort so kurz aber exakt."""
llm_template = "Beantworte die Frage am Ende. " + template + "Frage: {question} Hilfreiche Antwort: "
rag_template = "Nutze die folgenden Kontext Teile, um die Frage zu beantworten am Ende. " + template + "{context} Frage: {question} Hilfreiche Antwort: "
#################################################
#Konstanten
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
template = rag_template)
#Plattform Keys aus den Secrets holen zu diesem Space
HUGGINGFACEHUB_API_TOKEN = os.getenv("HF_ACCESS_READ")
OAI_API_KEY=os.getenv("OPENAI_API_KEY")
HEADERS = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
#Pfad, wo Docs/Bilder/Filme abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner)
PATH_WORK = "."
CHROMA_DIR = "/chroma"
YOUTUBE_DIR = "/youtube"
###############################################
#URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
#YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
################################################
#LLM Model mit dem gearbeitet wird
#openai-------------------------------------
MODEL_NAME = "gpt-3.5-turbo-16k"
#MODEL_NAME = "gpt-3.5-turbo-1106"
#MODEL_NAME= "gpt-4-1106-preview"
#verfügbare Modelle anzeigen lassen
#HuggingFace Reop ID--------------------------------
#repo_id = "meta-llama/Llama-2-13b-chat-hf"
repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
#repo_id = "TheBloke/Yi-34B-Chat-GGUF"
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
#repo_id = "tiiuae/falcon-40b"
#repo_id = "Vicuna-33b"
#repo_id = "alexkueck/ChatBotLI2Klein"
#repo_id = "mistralai/Mistral-7B-v0.1"
#repo_id = "internlm/internlm-chat-7b"
#repo_id = "Qwen/Qwen-7B"
#repo_id = "Salesforce/xgen-7b-8k-base"
#repo_id = "Writer/camel-5b-hf"
#repo_id = "databricks/dolly-v2-3b"
#repo_id = "google/flan-t5-xxl"
#HuggingFace Model name--------------------------------
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
MODEL_NAME_OAI_ZEICHNEN = "dall-e-3"
#Alternativ zeichnen: Stabe Diffusion from HF:
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
################################################
#HF Hub Zugriff ermöglichen
###############################################
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
#################################################
#################################################
#################################################
#Funktionen zur Verarbeitung
################################################
##############################################
#History - die Frage oder das File eintragen...
def add_text(history, prompt, file):
if (file == None):
history = history + [(prompt, None)]
else:
if (prompt == ""):
history = history + [((file.name,), "Prompt fehlt!")]
else:
history = history + [((file.name,), None), (prompt, None)]
return history, prompt, "", gr.File(value="") #gr.Textbox(value="", interactive=False)
def add_file(history, file, prompt):
if (prompt == ""):
history = history + [((file.name,), None)]
else:
history = history + [((file.name,), None), (prompt, None)]
return history, prompt, ""
def file_anzeigen(file):
return gr.File(visible=True), file.name
def create_picture_backup(history, prompt):
client = OpenAI()
response = client.images.generate(model="dall-e-3", prompt=prompt,size="1024x1024",quality="standard",n=1,)
image_url = response.data[0].url
return image_url
def transfer_input(inputs):
textbox = reset_textbox()
return (
inputs,
gr.update(value=""),
gr.Button.update(visible=True),
)
##################################################
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
def create_directory_loader(file_type, directory_path):
#verscheidene Dokument loaders:
loaders = {
'.pdf': PyPDFLoader,
'.word': UnstructuredWordDocumentLoader,
}
return DirectoryLoader(
path=directory_path,
glob=f"**/*{file_type}",
loader_cls=loaders[file_type],
)
#die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits
def document_loading_splitting():
global splittet
##############################
# Document loading
docs = []
# kreiere einen DirectoryLoader für jeden file type
pdf_loader = create_directory_loader('.pdf', './chroma/pdf')
word_loader = create_directory_loader('.word', './chroma/word')
# Load the files
pdf_documents = pdf_loader.load()
word_documents = word_loader.load()
#alle zusammen in docs...
docs.extend(pdf_documents)
docs.extend(word_documents)
#andere loader...
# Load PDF
loader = PyPDFLoader(PDF_URL)
docs.extend(loader.load())
# Load Web
loader = WebBaseLoader(WEB_URL)
docs.extend(loader.load())
# Load YouTube
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,YOUTUBE_URL_2], PATH_WORK + YOUTUBE_DIR), OpenAIWhisperParser())
docs.extend(loader.load())
################################
# Document splitting
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500)
splits = text_splitter.split_documents(docs)
#nur bei erster Anfrage mit "choma" wird gesplittet...
splittet = True
return splits
#Chroma DB die splits ablegen - vektorisiert...
def document_storage_chroma(splits):
#OpenAi embeddings----------------------------------
Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR)
#HF embeddings--------------------------------------
#Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR)
#Mongo DB die splits ablegen - vektorisiert...
def document_storage_mongodb(splits):
MongoDBAtlasVectorSearch.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
collection = MONGODB_COLLECTION,
index_name = MONGODB_INDEX_NAME)
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
def document_retrieval_chroma(llm, prompt):
#OpenAI embeddings -------------------------------
embeddings = OpenAIEmbeddings()
#HF embeddings -----------------------------------
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
#etwas weniger rechenaufwendig:
#embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
#ChromaDb um die embedings zu speichern
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
return db
#dokumente in mongo db vektorisiert ablegen können - die Db vorbereiten daüfür
def document_retrieval_mongodb(llm, prompt):
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI,
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special = ()),
index_name = MONGODB_INDEX_NAME)
return db
###############################################
#Langchain anlegen
#langchain nutzen, um prompt an LLM zu leiten - llm und prompt sind austauschbar
def llm_chain(llm, prompt):
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
result = llm_chain.run({"question": prompt})
return result
#langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen
def rag_chain(llm, prompt, db):
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = db.as_retriever(search_kwargs = {"k": 3}),
return_source_documents = True)
result = rag_chain({"query": prompt})
return result["result"]
###################################################
#Prompts mit History erzeugen für verschiednee Modelle
###################################################
#Funktion, die einen Prompt mit der history zusammen erzeugt - allgemein
def generate_prompt_with_history(text, history, max_length=4048):
#prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
#prompt = "Das folgende ist eine Unterhaltung in deutsch zwischen einem Menschen und einem KI-Assistenten, der Baize genannt wird. Baize ist ein open-source KI-Assistent, der von UCSD entwickelt wurde. Der Mensch und der KI-Assistent chatten abwechselnd miteinander in deutsch. Die Antworten des KI Assistenten sind immer so ausführlich wie möglich und in Markdown Schreibweise und in deutscher Sprache. Wenn nötig übersetzt er sie ins Deutsche. Die Antworten des KI-Assistenten vermeiden Themen und Antworten zu unethischen, kontroversen oder sensiblen Themen. Die Antworten sind immer sehr höflich formuliert..\n[|Human|]Hallo!\n[|AI|]Hi!"
prompt=""
history = ["\n{}\n{}".format(x[0],x[1]) for x in history]
history.append("\n{}\n".format(text))
history_text = ""
flag = False
for x in history[::-1]:
history_text = x + history_text
flag = True
print ("Prompt: ..........................")
print(prompt+history_text)
if flag:
return prompt+history_text
else:
return None
#Prompt und History für OPenAi Schnittstelle
def generate_prompt_with_history_openai(prompt, history):
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": prompt})
return history_openai_format
#Prompt und History für Hugging Face Schnittstelle
def generate_prompt_with_history_hf(prompt, history):
history_transformer_format = history + [[prompt, ""]]
#stop = StopOnTokens()
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
for item in history_transformer_format])
#Prompt und History für Langchain Schnittstelle
def generate_prompt_with_history_langchain(prompt, history):
history_langchain_format = []
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=prompt))
return history_langchain_format
###################################################
#Funktion von Gradio aus, die den dort eingegebenen Prompt annimmt und weiterverarbeitet
#erstmal gucken, ob text oder Bild angekommen ist
def chatbot_response(messages):
print("messages.......................")
print(messages)
responses = []
for message in messages:
if message['type'] == 'text':
#invoke(message['data'], history, rag_option, model_option, openai_api_key, temperature=0.5, max_new_tokens=4048, top_p=0.6, repetition_penalty=1.3,)
responses.append({'type': 'text', 'data': f"Echo: {message['data']}"})
else:
print("Bild.............................")
return responses
def create_picture(history, prompt):
client = OpenAI()
response = client.images.generate(model="dall-e-3", prompt=prompt,size="1024x1024",quality="standard",n=1,)
image_url = response.data[0].url
return image_url
# prompt describing the desired image
#text = "batman art in red and blue color"
# calling the custom function "generate"
# saving the output in "url1"
#url1 = create_picture(text)
# using requests library to get the image in bytes
#response = requests.get(url1)
# using the Image module from PIL library to view the image
#Image.open(response.raw)
def invoke (prompt, file, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,):
global splittet
print(splittet)
if (openai_api_key == "" or openai_api_key == "sk-"):
#raise gr.Error("OpenAI API Key is required.")
#eigenen OpenAI key nutzen
openai_api_key= OAI_API_KEY
if (rag_option is None):
raise gr.Error("Retrieval Augmented Generation ist erforderlich.")
if (prompt == ""):
raise gr.Error("Prompt ist erforderlich.")
#Prompt an history anhängen und einen Text daraus machen
if (file == None):
history_text_und_prompt = generate_prompt_with_history(prompt, history)
else:
history_file_und_prompt = generate_prompt_with_history(prompt, history)
#history für HuggingFace Models formatieren
#history_text_und_prompt = generate_prompt_with_history_hf(prompt, history)
#history für openAi formatieren
#history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
#history für Langchain formatieren
#history_text_und_prompt = generate_prompt_with_history_langchain(prompt, history)
try:
###########################
#LLM auswählen (OpenAI oder HF)
###########################
if (model_option == "OpenAI"):
#Anfrage an OpenAI ----------------------------
if (prompt.find('zeichnen') != -1):
#print("OpenAI zeichnen.......................")
#llm = ChatOpenAI(model_name = MODEL_NAME_OAI_ZEICHNEN, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
data = {"inputs": prompt}
response = requests.post(API_URL, headers=HEADERS, json=data)
print("fertig Bild")
else:
print("OpenAI normal.......................")
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature)#, top_p = top_p)
print("openAI")
else:
#oder an Hugging Face --------------------------
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 128})
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
print("HF")
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
if (rag_option == "An"):
#muss nur einmal ausgeführt werden...
if not splittet:
splits = document_loading_splitting()
document_storage_chroma(splits)
db = document_retrieval_chroma(llm, history_text_und_prompt)
result = rag_chain(llm, history_text_und_prompt, db)
elif (rag_option == "MongoDB"):
#splits = document_loading_splitting()
#document_storage_mongodb(splits)
db = document_retrieval_mongodb(llm, history_text_und_prompt)
result = rag_chain(llm, history_text_und_prompt, db)
else:
print("LLM aufrufen ohne RAG: ...........")
if (prompt.find('zeichnen') != -1):
result = response.content
else:
result = llm_chain(llm, history_text_und_prompt)
except Exception as e:
raise gr.Error(e)
if (prompt.find('zeichnen') != -1):
#Bild ausgeben
image = Image.open(io.BytesIO(result))
history[-1][1] = "hallo" #file.name #image
print("history zeichnen......................")
print(history)
return history, "Stop: Success"
else:
#Antwort als Stream ausgeben... wenn Textantwort gefordert
history[-1][1] = ""
for character in result:
history[-1][1] += character
time.sleep(0.03)
yield history, "Generating"
if shared_state.interrupted:
shared_state.recover()
try:
yield history, "Stop: Success"
return
except:
pass
################################################
#GUI
###############################################
#Beschreibung oben in GUI
################################################
#title = "LLM mit RAG"
description = """<strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n
"""
#css = """.toast-wrap { display: none !important } """
#examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
def vote(data: gr.LikeData):
if data.liked: print("You upvoted this response: " + data.value)
else: print("You downvoted this response: " + data.value)
print ("Start GUIneu")
with open("custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
history = gr.State([])
user_question = gr.State("")
with gr.Row():
gr.HTML("LI Chatot")
status_display = gr.Markdown("Success", elem_id="status_display")
gr.Markdown(description_top)
with gr.Row():
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chuanhu_chatbot")
with gr.Row():
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False, placeholder="Gib hier deinen Prompt ein...",
container=False
)
with gr.Column(min_width=70, scale=1):
submitBtn = gr.Button("Senden")
with gr.Column(min_width=70, scale=1):
cancelBtn = gr.Button("Stop")
with gr.Row():
emptyBtn = gr.ClearButton( [user_input, chatbot], value="🧹 Neue Session", scale=3)
upload = gr.UploadButton("📁", file_types=["image", "video", "audio"], scale=3)
file_display = gr.File( label=None, interactive=False, height=20, min_width=20, visible=False, scale=2)
with gr.Column():
with gr.Column(min_width=50, scale=1):
with gr.Tab(label="Parameter Einstellung"):
#gr.Markdown("# Parameters")
rag_option = gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus")
model_option = gr.Radio(["OpenAI", "HuggingFace"], label="Modellauswahl", value = "OpenAI")
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1,
step=0.1,
interactive=True,
label="Temperature",
)
max_length_tokens = gr.Slider(
minimum=0,
maximum=512,
value=512,
step=8,
interactive=True,
label="Max Generation Tokens",
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=128,
interactive=True,
label="Max History Tokens",
)
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=True)
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1)
gr.Markdown(description)
#Argumente für generate Funktion als Input
predict_args = dict(
fn=invoke,
inputs=[
user_question,
upload,
chatbot,
#history,
rag_option,
model_option,
openai_key,
anzahl_docs,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
repetition_penalty
],
outputs=[chatbot, status_display], #[ chatbot, history, status_display],
show_progress=True,
)
reset_args = dict(
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
)
# Chatbot
transfer_input_args = dict(
fn=add_text, inputs=[chatbot, user_input, upload], outputs=[chatbot, user_question, user_input, file_display], show_progress=True
)
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args)
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args)
predict_event3 = upload.upload(file_anzeigen, [upload], [file_display, file_display] ) #.then(**predict_args)
cancelBtn.click(
cancels=[predict_event1,predict_event2, predict_event3 ]
)
demo.title = "LI-ChatBot"
demo.queue().launch(debug=True)
"""
additional_inputs = [
#gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus"),
gr.Radio(["OpenAI", "HuggingFace"], label="Modellauswahl", value = "HuggingFace"),
gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1),
gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten", visible=True),
gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens", visible=True),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit.", visible=True),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
]
with gr.Blocks() as demo:
reference_image = gr.Image(label="Reference Image")
chatbot_stream = gr.Chatbot()
chat_interface_stream = gr.ChatInterface(fn=invoke,
additional_inputs = additional_inputs,
additional_inputs_accordion = gr.Accordion(label="Weitere Eingaben...", open=False),
title = "ChatGPT vom LI",
theme="soft",
chatbot=chatbot_stream,
retry_btn="🔄 Wiederholen",
undo_btn="↩️ Letztes löschen",
clear_btn="🗑️ Verlauf löschen",
submit_btn = "Abschicken",
description = description,
)
gr.HTML(
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/magic-research/magic-animate" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
</a>
<div>
<h1 >Chatbot des LI - hier im Test mit Image Eingabe</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;>
<a href="https://arxiv.org/abs/2311.16498"><img src="https://img.shields.io/badge/Arxiv-2311.16498-red"></a>
</div>
</div>
</div>
)
with gr.Row():
prompt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Gib einen Text ein oder lade eine Datei (Bild, File, Audio) hoch",
container=False,
)
btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])
txt_msg = txt.submit(invoke, [chat_interface_stream, prompt], [chat_interface_stream, prompt], queue=False).then(bot, chat_interface_stream, chat_interface_stream, api_name="bot_response")
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [prompt], queue=False)
file_msg = btn.upload(add_file, [chat_interface_stream, btn], [chat_interface_stream], queue=False).then(bot, chat_interface_stream, chat_interface_stream)
#chatbot_stream.like(print_like_dislike, None, None)
demo.queue().launch()
""" |