|
from __future__ import annotations |
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type |
|
import logging |
|
import json |
|
import os |
|
import datetime |
|
import hashlib |
|
import csv |
|
import requests |
|
import re |
|
import html |
|
import markdown2 |
|
import torch |
|
import sys |
|
import gc |
|
from pygments.lexers import guess_lexer, ClassNotFound |
|
|
|
import gradio as gr |
|
from pypinyin import lazy_pinyin |
|
import tiktoken |
|
import mdtex2html |
|
from markdown import markdown |
|
from pygments import highlight |
|
from pygments.lexers import guess_lexer,get_lexer_by_name |
|
from pygments.formatters import HtmlFormatter |
|
|
|
from langchain.chains import LLMChain, RetrievalQA |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader |
|
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader |
|
from langchain.document_loaders.generic import GenericLoader |
|
from langchain.document_loaders.parsers import OpenAIWhisperParser |
|
from langchain.schema import AIMessage, HumanMessage |
|
from langchain.llms import HuggingFaceHub |
|
from langchain.llms import HuggingFaceTextGenInference |
|
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings |
|
|
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from chromadb.errors import InvalidDimensionException |
|
import io |
|
from PIL import Image, ImageDraw, ImageOps, ImageFont |
|
import base64 |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_directory_loader(file_type, directory_path): |
|
|
|
loaders = { |
|
'.pdf': PyPDFLoader, |
|
'.word': UnstructuredWordDocumentLoader, |
|
} |
|
return DirectoryLoader( |
|
path=directory_path, |
|
glob=f"**/*{file_type}", |
|
loader_cls=loaders[file_type], |
|
) |
|
|
|
|
|
def document_loading_splitting(): |
|
global splittet |
|
|
|
|
|
docs = [] |
|
|
|
|
|
pdf_loader = create_directory_loader('.pdf', './chroma/pdf') |
|
word_loader = create_directory_loader('.word', './chroma/word') |
|
|
|
|
|
|
|
pdf_documents = pdf_loader.load() |
|
word_documents = word_loader.load() |
|
|
|
|
|
docs.extend(pdf_documents) |
|
docs.extend(word_documents) |
|
|
|
|
|
|
|
loader = PyPDFLoader(PDF_URL) |
|
docs.extend(loader.load()) |
|
|
|
loader = WebBaseLoader(WEB_URL) |
|
docs.extend(loader.load()) |
|
|
|
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,YOUTUBE_URL_2], PATH_WORK + YOUTUBE_DIR), OpenAIWhisperParser()) |
|
docs.extend(loader.load()) |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500) |
|
splits = text_splitter.split_documents(docs) |
|
|
|
|
|
splittet = True |
|
return splits |
|
|
|
|
|
|
|
def document_storage_chroma(splits): |
|
|
|
Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR) |
|
|
|
|
|
|
|
|
|
|
|
def document_storage_mongodb(splits): |
|
MongoDBAtlasVectorSearch.from_documents(documents = splits, |
|
embedding = OpenAIEmbeddings(disallowed_special = ()), |
|
collection = MONGODB_COLLECTION, |
|
index_name = MONGODB_INDEX_NAME) |
|
|
|
|
|
def document_retrieval_chroma(llm, prompt): |
|
|
|
embeddings = OpenAIEmbeddings() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR) |
|
return db |
|
|
|
|
|
|
|
|
|
def document_retrieval_chroma2(): |
|
|
|
embeddings = OpenAIEmbeddings() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR) |
|
print ("Chroma DB bereit ...................") |
|
|
|
return db |
|
|
|
|
|
|
|
def document_retrieval_mongodb(llm, prompt): |
|
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI, |
|
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME, |
|
OpenAIEmbeddings(disallowed_special = ()), |
|
index_name = MONGODB_INDEX_NAME) |
|
return db |
|
|
|
|
|
|
|
|
|
|
|
def llm_chain(llm, prompt): |
|
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) |
|
result = llm_chain.run({"question": prompt}) |
|
return result |
|
|
|
|
|
|
|
def rag_chain(llm, prompt, db): |
|
rag_chain = RetrievalQA.from_chain_type(llm, |
|
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, |
|
retriever = db.as_retriever(search_kwargs = {"k": 3}), |
|
return_source_documents = True) |
|
result = rag_chain({"query": prompt}) |
|
return result["result"] |
|
|
|
|
|
|
|
|
|
|
|
def rag_chain2(prompt, db, k=3): |
|
rag_template = "Nutze die folgenden Kontext Teile am Ende, um die Frage zu beantworten . " + template + "Frage: " + prompt + "Kontext Teile: " |
|
retrieved_chunks = db.similarity_search(prompt, k) |
|
|
|
neu_prompt = rag_template |
|
for i, chunk in enumerate(retrieved_chunks): |
|
neu_prompt += f"{i+1}. {chunk}\n" |
|
|
|
return neu_prompt |
|
|
|
|
|
|
|
|
|
|
|
def generate_prompt_with_history(text, history, max_length=4048): |
|
|
|
|
|
prompt="" |
|
history = ["\n{}\n{}".format(x[0],x[1]) for x in history] |
|
history.append("\n{}\n".format(text)) |
|
history_text = "" |
|
flag = False |
|
for x in history[::-1]: |
|
history_text = x + history_text |
|
flag = True |
|
print ("Prompt: ..........................") |
|
print(prompt+history_text) |
|
if flag: |
|
return prompt+history_text |
|
else: |
|
return None |
|
|
|
|
|
|
|
def generate_prompt_with_history_openai(prompt, history): |
|
history_openai_format = [] |
|
for human, assistant in history: |
|
history_openai_format.append({"role": "user", "content": human }) |
|
history_openai_format.append({"role": "assistant", "content":assistant}) |
|
|
|
history_openai_format.append({"role": "user", "content": prompt}) |
|
print("openai history und prompt................") |
|
print(history_openai_format) |
|
return history_openai_format |
|
|
|
|
|
|
|
def generate_prompt_with_history_hf(prompt, history): |
|
history_transformer_format = history + [[prompt, ""]] |
|
|
|
|
|
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) |
|
for item in history_transformer_format]) |
|
|
|
|
|
|
|
def generate_prompt_with_history_langchain(prompt, history): |
|
history_langchain_format = [] |
|
for human, ai in history: |
|
history_langchain_format.append(HumanMessage(content=human)) |
|
history_langchain_format.append(AIMessage(content=ai)) |
|
history_langchain_format.append(HumanMessage(content=prompt)) |
|
|
|
return history_langchain_format |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def markdown_to_html_with_syntax_highlight(md_str): |
|
def replacer(match): |
|
lang = match.group(1) or "text" |
|
code = match.group(2) |
|
lang = lang.strip() |
|
|
|
if lang=="text": |
|
lexer = guess_lexer(code) |
|
lang = lexer.name |
|
|
|
try: |
|
lexer = get_lexer_by_name(lang, stripall=True) |
|
except ValueError: |
|
lexer = get_lexer_by_name("python", stripall=True) |
|
formatter = HtmlFormatter() |
|
|
|
highlighted_code = highlight(code, lexer, formatter) |
|
|
|
return f'<pre><code class="{lang}">{highlighted_code}</code></pre>' |
|
|
|
code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```" |
|
md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE) |
|
|
|
html_str = markdown(md_str) |
|
return html_str |
|
|
|
|
|
def normalize_markdown(md_text: str) -> str: |
|
lines = md_text.split("\n") |
|
normalized_lines = [] |
|
inside_list = False |
|
|
|
for i, line in enumerate(lines): |
|
if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()): |
|
if not inside_list and i > 0 and lines[i - 1].strip() != "": |
|
normalized_lines.append("") |
|
inside_list = True |
|
normalized_lines.append(line) |
|
elif inside_list and line.strip() == "": |
|
if i < len(lines) - 1 and not re.match( |
|
r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip() |
|
): |
|
normalized_lines.append(line) |
|
continue |
|
else: |
|
inside_list = False |
|
normalized_lines.append(line) |
|
|
|
return "\n".join(normalized_lines) |
|
|
|
|
|
def convert_mdtext(md_text): |
|
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL) |
|
inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL) |
|
code_blocks = code_block_pattern.findall(md_text) |
|
non_code_parts = code_block_pattern.split(md_text)[::2] |
|
|
|
result = [] |
|
for non_code, code in zip(non_code_parts, code_blocks + [""]): |
|
if non_code.strip(): |
|
non_code = normalize_markdown(non_code) |
|
if inline_code_pattern.search(non_code): |
|
result.append(markdown(non_code, extensions=["tables"])) |
|
else: |
|
result.append(mdtex2html.convert(non_code, extensions=["tables"])) |
|
if code.strip(): |
|
code = f"\n```{code}\n\n```" |
|
code = markdown_to_html_with_syntax_highlight(code) |
|
result.append(code) |
|
result = "".join(result) |
|
result += ALREADY_CONVERTED_MARK |
|
return result |
|
|
|
def convert_asis(userinput): |
|
return f"<p style=\"white-space:pre-wrap;\">{html.escape(userinput)}</p>"+ALREADY_CONVERTED_MARK |
|
|
|
def detect_converted_mark(userinput): |
|
if userinput.endswith(ALREADY_CONVERTED_MARK): |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
|
|
def detect_language(code): |
|
if code.startswith("\n"): |
|
first_line = "" |
|
else: |
|
first_line = code.strip().split("\n", 1)[0] |
|
language = first_line.lower() if first_line else "" |
|
code_without_language = code[len(first_line) :].lstrip() if first_line else code |
|
return language, code_without_language |
|
|
|
def convert_to_markdown(text): |
|
text = text.replace("$","$") |
|
def replace_leading_tabs_and_spaces(line): |
|
new_line = [] |
|
|
|
for char in line: |
|
if char == "\t": |
|
new_line.append("	") |
|
elif char == " ": |
|
new_line.append(" ") |
|
else: |
|
break |
|
return "".join(new_line) + line[len(new_line):] |
|
|
|
markdown_text = "" |
|
lines = text.split("\n") |
|
in_code_block = False |
|
|
|
for line in lines: |
|
if in_code_block is False and line.startswith("```"): |
|
in_code_block = True |
|
markdown_text += f"{line}\n" |
|
elif in_code_block is True and line.startswith("```"): |
|
in_code_block = False |
|
markdown_text += f"{line}\n" |
|
elif in_code_block: |
|
markdown_text += f"{line}\n" |
|
else: |
|
line = replace_leading_tabs_and_spaces(line) |
|
line = re.sub(r"^(#)", r"\\\1", line) |
|
markdown_text += f"{line} \n" |
|
|
|
return markdown_text |
|
|
|
def add_language_tag(text): |
|
def detect_language(code_block): |
|
try: |
|
lexer = guess_lexer(code_block) |
|
return lexer.name.lower() |
|
except ClassNotFound: |
|
return "" |
|
|
|
code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE) |
|
|
|
def replacement(match): |
|
code_block = match.group(2) |
|
if match.group(2).startswith("\n"): |
|
language = detect_language(code_block) |
|
if language: |
|
return f"```{language}{code_block}```" |
|
else: |
|
return f"```\n{code_block}```" |
|
else: |
|
return match.group(1) + code_block + "```" |
|
|
|
text2 = code_block_pattern.sub(replacement, text) |
|
return text2 |
|
|
|
def delete_last_conversation(chatbot, history): |
|
if len(chatbot) > 0: |
|
chatbot.pop() |
|
|
|
if len(history) > 0: |
|
history.pop() |
|
|
|
return ( |
|
chatbot, |
|
history, |
|
"Delete Done", |
|
) |
|
|
|
def reset_state(): |
|
return [], [], "Reset Done" |
|
|
|
def reset_textbox(): |
|
return gr.update(value=""),"" |
|
|
|
def cancel_outputing(): |
|
return "Stop Done" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_picture(history, prompt): |
|
client = OpenAI() |
|
response = client.images.generate(model="dall-e-3", prompt=prompt,size="1024x1024",quality="standard",n=1,) |
|
image_url = response.data[0].url |
|
|
|
response2 = requests.get(image_url) |
|
|
|
image = Image.open(response2.raw) |
|
return image |
|
|
|
|
|
|
|
|
|
def process_image(image_path, prompt): |
|
|
|
with open(image_path, "rb") as image_file: |
|
encoded_string = base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
|
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OAI_API_KEY}" |
|
} |
|
|
|
payload = { |
|
"model": MODEL_NAME_IMAGE, |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": prompt |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{encoded_string}" |
|
} |
|
} |
|
] |
|
} |
|
], |
|
"max_tokens": 300 |
|
} |
|
return headers, payload |
|
|
|
|
|
|
|
def transfer_input(inputs): |
|
textbox = reset_textbox() |
|
return ( |
|
inputs, |
|
gr.update(value=""), |
|
gr.Button.update(visible=True), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
class State: |
|
interrupted = False |
|
|
|
def interrupt(self): |
|
self.interrupted = True |
|
|
|
def recover(self): |
|
self.interrupted = False |
|
shared_state = State() |
|
|
|
|
|
|
|
|
|
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool: |
|
for stop_word in stop_words: |
|
if s.endswith(stop_word): |
|
return True |
|
for i in range(1, len(stop_word)): |
|
if s.endswith(stop_word[:i]): |
|
return True |
|
return False |
|
|
|
|
|
|