alexkueck commited on
Commit
904c2ae
·
verified ·
1 Parent(s): 422b9c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -498,7 +498,7 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
498
  print("HF Anfrage.......................")
499
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
500
  llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
501
- #llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
502
  #llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
503
  #llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
504
  #llm via HuggingChat
@@ -522,9 +522,10 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
522
  else:
523
  #splittet = False
524
  print("LLM aufrufen ohne RAG: ...........")
525
- #resulti = llm_chain(llm, history_text_und_prompt)
526
- #result = resulti.strip()
527
  #Alternativ mit API_URL - aber das model braucht 93 B Space!!!
 
528
  data = {
529
  "inputs": prompt,
530
  "parameters": {"temperature": 0.2, "max_length": 64},
@@ -538,7 +539,7 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
538
  print("Fehler:", response.text)
539
  result = response.json()
540
 
541
- """
542
  chatbot_response = result[0]['generated_text']
543
  print("anzahl tokens gesamt antwort:------------------")
544
  print (len(chatbot_response.split()))
 
498
  print("HF Anfrage.......................")
499
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
500
  llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
501
+ llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
502
  #llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
503
  #llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
504
  #llm via HuggingChat
 
522
  else:
523
  #splittet = False
524
  print("LLM aufrufen ohne RAG: ...........")
525
+ resulti = llm_chain(llm, history_text_und_prompt)
526
+ result = resulti.strip()
527
  #Alternativ mit API_URL - aber das model braucht 93 B Space!!!
528
+ """
529
  data = {
530
  "inputs": prompt,
531
  "parameters": {"temperature": 0.2, "max_length": 64},
 
539
  print("Fehler:", response.text)
540
  result = response.json()
541
 
542
+
543
  chatbot_response = result[0]['generated_text']
544
  print("anzahl tokens gesamt antwort:------------------")
545
  print (len(chatbot_response.split()))