|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type |
|
import logging |
|
import json |
|
import os |
|
from datetime import datetime |
|
import hashlib |
|
import csv |
|
import requests |
|
import re |
|
import html |
|
import markdown2 |
|
import torch |
|
import sys |
|
import gc |
|
from pygments.lexers import guess_lexer, ClassNotFound |
|
import time |
|
import json |
|
import operator |
|
from typing import Annotated, Sequence, TypedDict |
|
import pprint |
|
|
|
import gradio as gr |
|
from pypinyin import lazy_pinyin |
|
import tiktoken |
|
import mdtex2html |
|
from markdown import markdown |
|
from pygments import highlight |
|
from pygments.lexers import guess_lexer,get_lexer_by_name |
|
from pygments.formatters import HtmlFormatter |
|
|
|
from langchain.chains import LLMChain, RetrievalQA |
|
from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader, DirectoryLoader |
|
|
|
|
|
from langchain.schema import AIMessage, HumanMessage |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain_community.llms import HuggingFaceTextGenInference |
|
from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings |
|
from langchain_community.tools import DuckDuckGoSearchRun |
|
from typing import Dict, TypedDict |
|
from langchain_core.messages import BaseMessage |
|
from langchain.prompts import PromptTemplate |
|
|
|
|
|
|
|
from langchain.prompts import PromptTemplate |
|
from langchain.schema import Document |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_core.messages import BaseMessage, FunctionMessage |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.pydantic_v1 import BaseModel, Field |
|
from langchain_core.runnables import RunnablePassthrough |
|
from langchain_core.utils.function_calling import convert_to_openai_tool |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from chromadb.errors import InvalidDimensionException |
|
import io |
|
from PIL import Image, ImageDraw, ImageOps, ImageFont |
|
import base64 |
|
from tempfile import NamedTemporaryFile |
|
|
|
import nltk |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import word_tokenize |
|
from nltk.stem import WordNetLemmatizer |
|
|
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
|
|
|
|
nltk.download('punkt') |
|
nltk.download('stopwords') |
|
german_stopwords = set(stopwords.words('german')) |
|
|
|
|
|
|
|
|
|
PATH_WORK = "." |
|
CHROMA_DIR = "/chroma/kkg" |
|
CHROMA_PDF = './chroma/kkg/pdf' |
|
CHROMA_WORD = './chroma/kkg/word' |
|
CHROMA_EXCEL = './chroma/kkg/excel' |
|
YOUTUBE_DIR = "/youtube" |
|
HISTORY_PFAD = "/data/history" |
|
|
|
|
|
|
|
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" |
|
WEB_URL = "https://openai.com/research/gpt-4" |
|
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" |
|
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" |
|
|
|
|
|
urls = [ |
|
"https://kkg.hamburg.de/unser-leitbild/" |
|
"https://kkg.hamburg.de/unsere-schulcharta/", |
|
"https://kkg.hamburg.de/koordination-unterrichtsentwicklung/", |
|
"https://kkg.hamburg.de/konzept-medien-und-it-am-kkg/", |
|
] |
|
|
|
|
|
|
|
|
|
|
|
def normalise_prompt (prompt): |
|
|
|
prompt_klein =prompt.lower() |
|
|
|
tokens = word_tokenize(prompt_klein) |
|
|
|
tokens = [word for word in tokens if word.isalnum()] |
|
|
|
|
|
tokens = [word for word in tokens if not word in german_stopwords] |
|
|
|
nltk.download('wordnet') |
|
lemmatizer = WordNetLemmatizer() |
|
tokens = [lemmatizer.lemmatize(word) for word in tokens] |
|
|
|
tokens = [re.sub(r'\W+', '', word) for word in tokens] |
|
|
|
from spellchecker import SpellChecker |
|
spell = SpellChecker() |
|
tokens = [spell.correction(word) for word in tokens] |
|
|
|
normalized_prompt = ' '.join(tokens) |
|
print("normaiserd prompt..................................") |
|
print(normalized_prompt) |
|
return normalized_prompt |
|
|
|
|
|
|
|
|
|
def preprocess_text(text): |
|
if not text: |
|
return "" |
|
|
|
text = text.lower() |
|
tokenizer = RegexpTokenizer(r'\w+') |
|
word_tokens = tokenizer.tokenize(text) |
|
filtered_words = [word for word in word_tokens if word not in german_stopwords] |
|
stemmer = SnowballStemmer("german") |
|
stemmed_words = [stemmer.stem(word) for word in filtered_words] |
|
return " ".join(stemmed_words) |
|
|
|
|
|
def clean_text(text): |
|
|
|
text = re.sub(r'[^\x00-\x7F]+', ' ', text) |
|
|
|
text = re.sub(r'\s+', ' ', text) |
|
return text.strip() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_directory_loader(file_type, directory_path): |
|
|
|
loaders = { |
|
'.pdf': PyPDFLoader, |
|
'.word': UnstructuredWordDocumentLoader, |
|
} |
|
return DirectoryLoader( |
|
path=directory_path, |
|
glob=f"**/*{file_type}", |
|
loader_cls=loaders[file_type], |
|
) |
|
|
|
|
|
def document_loading_splitting(): |
|
|
|
|
|
docs = [] |
|
|
|
|
|
pdf_loader = create_directory_loader('.pdf', CHROMA_PDF) |
|
word_loader = create_directory_loader('.word', CHROMA_WORD) |
|
print("PDF Loader done............................") |
|
|
|
|
|
pdf_documents = pdf_loader.load() |
|
word_documents = word_loader.load() |
|
|
|
|
|
docs.extend(pdf_documents) |
|
docs.extend(word_documents) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500) |
|
splits = text_splitter.split_documents(docs) |
|
|
|
return splits |
|
|
|
|
|
|
|
def document_storage_chroma(splits): |
|
|
|
|
|
|
|
|
|
Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR) |
|
|
|
|
|
|
|
|
|
def document_retrieval_chroma(llm, prompt): |
|
|
|
|
|
embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) |
|
|
|
|
|
|
|
|
|
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR) |
|
return db |
|
|
|
|
|
|
|
|
|
|
|
|
|
def rag_chain(prompt, db, k=3): |
|
rag_template = "Nutze ausschließlich die folgenden Kontext Teile am Ende, um die Frage zu beantworten . " + template + "Frage: " + prompt + "Kontext Teile: " |
|
retrieved_chunks = db.similarity_search(prompt, k) |
|
|
|
neu_prompt = rag_template |
|
for i, chunk in enumerate(retrieved_chunks): |
|
neu_prompt += f"{i+1}. {chunk}\n" |
|
|
|
return neu_prompt |
|
|
|
|
|
|
|
|
|
|
|
|
|
def hash_input(input_string): |
|
return hashlib.sha256(input_string.encode()).hexdigest() |
|
|
|
|
|
|
|
|
|
|
|
def transfer_input(inputs): |
|
textbox = reset_textbox() |
|
return ( |
|
inputs, |
|
gr.update(value=""), |
|
gr.Button.update(visible=True), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
class State: |
|
interrupted = False |
|
|
|
def interrupt(self): |
|
self.interrupted = True |
|
|
|
def recover(self): |
|
self.interrupted = False |
|
shared_state = State() |
|
|
|
|
|
|
|
|
|
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool: |
|
for stop_word in stop_words: |
|
if s.endswith(stop_word): |
|
return True |
|
for i in range(1, len(stop_word)): |
|
if s.endswith(stop_word[:i]): |
|
return True |
|
return False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|