SucheRAG / app.py
alexkueck's picture
Update app.py
e36cd6a verified
raw
history blame
23.7 kB
import requests
import os, sys, json
import gradio as gr
import time
import re
import io
from PIL import Image, ImageDraw, ImageOps, ImageFont
import base64
import tempfile
from PyPDF2 import PdfReader, PdfWriter
from langchain.chains import LLMChain, RetrievalQA
from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader, DirectoryLoader
from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
#from langchain.document_loaders import GenericLoader
from langchain.schema import AIMessage, HumanMessage
from langchain_community.llms import HuggingFaceHub
from langchain_community.llms import HuggingFaceTextGenInference
from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from chromadb.errors import InvalidDimensionException
from utils import *
from beschreibungen import *
#Konstanten
#Validieren des PW
ANTI_BOT_PW = os.getenv("VALIDATE_PW")
#max Anzahl der zurückgelieferten Dokumente
ANZAHL_DOCS = 5
PATH_WORK = "."
CHROMA_DIR = "/chroma/kkg"
CHROMA_PDF = './chroma/kkg/pdf'
CHROMA_WORD = './chroma/kkg/word'
CHROMA_EXCEL = './chroma/kkg/excel'
#HuggingFace Model name--------------------------------
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
# Hugging Face Token direkt im Code setzen
hf_token = os.getenv("HF_READ")
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_READ")
###############################################
#globale Variablen
##############################################
#nur bei ersten Anfrage splitten der Dokumente - um die Vektordatenbank entsprechend zu füllen
#splittet = False
#DB für Vektorstore
vektordatenbank = None
retriever = None
#############################################
# Allgemeine Konstanten
#Filepath zu temp Folder (temp) mit File von ausgewähltem chatverlauf
file_path_download = ""
#################################################
#################################################
#Funktionen zur Verarbeitung
################################################
##############################################
#wenn löschen Button geklickt
def clear_all(history, uploaded_file_paths, chats):
dic_history = {schluessel: wert for schluessel, wert in history}
#später wird die summary auf 50 tokens verkürzt, um die Anfrage nicht so teuer werden zu lassen
#summary wird gebraucht für die Anfrage beim NN, um eine Überschrift des Eintrages zu generieren
summary = "\n\n".join(f'{schluessel}: \n {wert}' for schluessel, wert in dic_history.items())
#falls file mit summay für download existiert hat: das zunächst löschen
#cleanup(file_path_download)
#noch nicht im Einsatz, aber hier werden alle Chats einer Sitzung gespeichert
#den aktuellen Chatverlauf zum Download bereitstellen:
if chats != {} :
id_neu = len(chats)+1
chats[id_neu]= summary
else:
chats[0]= summary
#Eine Überschrift zu dem jeweiligen Chatverlauf finden - abhängig vom Inhalt
#file_path_download = save_and_download(summary)
headers, payload = process_chatverlauf(summary, MODEL_NAME, OAI_API_KEY)
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
#als json ausgeben
data = response.json()
# Den "content" auswählen, da dort die Antwort der Ki enthalten ist
result = data['choices'][0]['message']['content']
worte = result.split()
if len(worte) > 2:
file_path_download = "data/" + str(len(chats)) + "_Chatverlauf.pdf"
else:
file_path_download = "data/" + str(len(chats)) + "_" + result + ".pdf"
erstellePdf(file_path_download, result, dic_history)
#die session variable in gradio erweitern und alle fliepath neu in das gr.File hochladen
uploaded_file_paths= uploaded_file_paths + [file_path_download]
return None, gr.Image(visible=False), uploaded_file_paths, [], gr.File(uploaded_file_paths, label="Download-Chatverläufe", visible=True, file_count="multiple", interactive = False), chats
#wenn löschen Button geklickt
def clear_all3(history):
#die session variable in gradio erweitern und alle fliepath neu in das gr.File hochladen
uploaded_file_paths= ""
return None, gr.Image(visible=False), [],
##############################################
#History - die Frage oder das File eintragen...
#in history_file ist ein file gespeichert, falls voher im Verlauf schon ein File hochgeladen wurde.
#wird ein neuer File hochgeladen, so wird history_fiel dadurch ersetzt
def add_text(chatbot, history, prompt, file, file_history):
if (file == None):
chatbot = chatbot +[(prompt, None)]
else:
file_history = file
if (prompt == ""):
chatbot=chatbot + [((file.name,), "Prompt fehlt!")]
else:
chatbot = chatbot +[("Hochgeladenes Dokument: "+ get_filename(file) +"\n" + prompt, None)]
return chatbot, history, prompt, file, file_history, gr.Image(visible = False), ""
def add_text2(chatbot, prompt):
if (prompt == ""):
chatbot = chatbot + [("", "Prompt fehlt!")]
else:
chatbot = chatbot + [(prompt, None)]
print("chatbot nach add_text............")
print(chatbot)
return chatbot, prompt, ""
############################################
#nach dem Upload soll das zusätzliche Fenster mit dem image drinnen angezeigt werden
def file_anzeigen(file):
ext = analyze_file(file)
if (ext == "png" or ext == "PNG" or ext == "jpg" or ext == "jpeg" or ext == "JPG" or ext == "JPEG"):
return gr.Image(width=47, visible=True, interactive = False, height=47, min_width=47, show_label=False, show_share_button=False, show_download_button=False, scale = 0.5), file, file
else:
return gr.Image(width=47, visible=True, interactive = False, height=47, min_width=47, show_label=False, show_share_button=False, show_download_button=False, scale = 0.5), "data/file.png", file
def file_loeschen():
return None, gr.Image(visible = False)
############################################
#wenn 'Stop' Button geklickt, dann Message dazu und das Eingabe-Fenster leeren
def cancel_outputing():
reset_textbox()
return "Stop Done"
def reset_textbox():
return gr.update(value=""),""
##########################################
#Hilfsfunktion, um ein von Stable Diffusion erzeugtes Bild für die Ausgabe in der History vorzubereiten
def umwandeln_fuer_anzeige(image):
buffer = io.BytesIO()
image.save(buffer, format='PNG')
return buffer.getvalue()
####################################################
#aus einem Text-Prompt die Antwort von KI bekommen
#mit oder ohne RAG möglich
def generate_text (prompt, chatbot, history, vektordatenbank, top_p=0.6, temperature=0.2, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=35):
print("Text pur..............................")
if (prompt == ""):
raise gr.Error("Prompt ist erforderlich.")
try:
#oder an Hugging Face --------------------------
print("HF Anfrage.......................")
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
#llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
#Prompt an history anhängen und einen Text daraus machen
history_text_und_prompt = generate_prompt_with_history(prompt, history)
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
print("LLM aufrufen mit RAG: ...........")
result = rag_chain(history_text_und_prompt, db, ANZAHL_DOCS)
print("result regchain.....................")
print(result)
except Exception as e:
raise gr.Error(e)
return result, False
########################################
# Bot- test gegen schädliche Bots die die Anwendung testen...
# Funktion zur Überprüfung der Benutzereingabe
# Funktion zur Überprüfung der Eingabe und Aktivierung der Hauptanwendung
def validate_input(user_input_validate, validate=False):
print("pw...................."+str(user_input_validate))
user_input_hashed = hash_input(user_input_validate)
if user_input_hashed == hash_input(ANTI_BOT_PW):
return "Richtig! Weiter gehts... ", True, gr.Textbox(visible=False), gr.Button(visible=False)
else:
return "Falsche Antwort!!!!!!!!!", False, gr.Textbox(label = "", placeholder="Bitte tippen Sie das oben im Moodle Kurs angegebene Wort ein, um zu beweisen, dass Sie kein Bot sind.", visible=True, scale= 5), gr.Button("Validieren", visible = True)
def custom_css():
return """
body, html {
background-color: #303030; /* Dunkler Hintergrund */
color:#353535;
}
"""
#nicht in Gebrauch...................................
def get_rag_response(question):
# Abfrage der relevanten Dokumente aus Chroma DB
docs = chroma_db.search(question, top_k=5)
passages = [doc['text'] for doc in docs]
links = [doc.get('url', 'No URL available') for doc in docs]
# Generieren der Antwort
context = " ".join(passages)
qa_input = {"question": question, "context": context}
answer = qa_pipeline(qa_input)['answer']
# Zusammenstellen der Ausgabe
response = {
"answer": answer,
"documents": [{"link": link, "passage": passage} for link, passage in zip(links, passages)]
}
return response
#Eingaben der GUI verarbeiten
def generate_auswahl(prompt_in, file, file_history, chatbot, history, anzahl_docs=4, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,top_k=5, validate=False):
global vektordatenbank, retriever
#nur wenn man sich validiert hat, kann die Anwendung los legen
if (validate and not prompt_in == "" and not prompt_in == None):
# Vektorstore initialisieren
#falls schon ein File hochgeladen wurde, ist es in history_file gespeichert - falls ein neues File hochgeladen wurde, wird es anschließend neu gesetzt
neu_file = file_history
#prompt normalisieren bevor er an die KIs geht
prompt = normalise_prompt(prompt_in)
#muss nur einmal ausgeführt werden...
#?????????????????????????????????????????????? Nicht passend zum Promt???????????????????????????
if vektordatenbank == None:
print("db neu aufbauen!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1")
splits = document_loading_splitting()
vektordatenbank, retriever = document_storage_chroma(splits)
#kein Bild hochgeladen -> auf Text antworten...
status = "Antwort der KI ..."
if (file == None and file_history == None):
result, status = generate_text(prompt, chatbot, history,vektordatenbank, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=3)
else:
#Es wurde ein File neu angehängt -> das hochladen und dann Prompt bearbeiten
#das history_fiel muss neu gesetzt werden
if (file != None):
# file_history wird neu gesetzt in der Rückgabe dieser Funktion...
neu_file = file
#File hochladen in Chroma und dann Antwort generieren
result = generate_text_zu_doc(neu_file, prompt, k, rag_option, chatbot, history, vektordatenbank)
#########################################
#result verarbeiten
#aus result die Ergebnisse aufteilen und der History anhängen
#passages = [doc['text'] for doc in docs]
#links = [doc.get('url', 'No URL available') for doc in docs]
# Zusammenstellen der Ausgabe
#response = {
#"answer": result,
#"documents": [{"link": link, "passage": passage} for link, passage in zip(links, passages)]
#}
response = {"answer": result}
#die history erweitern - abhängig davon, ob gerade ein file hochgeladen wurde oder nicht
if (file != None):
history = history + [[(file,), None],[prompt, response]]
else:
history = history + [[prompt, response]]
chatbot[-1][1] = ""
for character in response:
chatbot[-1][1] += character
time.sleep(0.03)
yield chatbot, history, None, neu_file, status
if shared_state.interrupted:
shared_state.recover()
try:
yield chatbot, history, None, neu_file, "Stop: Success"
except:
pass
else: #noch nicht validiert, oder kein Prompt
return chatbot, history, None, file_history, "Erst validieren oder einen Prompt eingeben!"
#############################################################################################
# Start Gui Vorabfrage
# Validierungs-Interface - Bots weghalten...
print ("Start GUI Vorabfrage")
#################################################################################################
print ("Start GUI Hauptanwendung")
with open("custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
#Add Inputs für Tab 2
additional_inputs = [
gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten", visible=True),
gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens", visible=True),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit.", visible=True),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
]
with gr.Blocks(css=customCSS, theme=themeAlex) as demo:
#validiert speichern
validate = gr.State(False)
#Session Variablen, um Weete zu speichern, auch wenn die Felder in der GUI bereits wieder leer sind
# history parallel zu chatbot speichern - da in chatbot bei Bildern zum Anzeigen in der GUI die Bilder speziell formatiert werden,
# für die Übergabe an die ki aber der Pfad zum Bild behalten werden muss - was in der history der Fall ist!
history = gr.State([])
uploaded_file_paths= gr.State([])
history3 = gr.State([])
uploaded_file_paths3= gr.State([])
#alle chats einer Session sammeln
chats = gr.State({})
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
user_question = gr.State("")
#für die anderen Tabs auch...
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
user_question2 = gr.State("")
user_question3 = gr.State("")
attached_file = gr.State(None)
attached_file_history = gr.State(None)
attached_file3 = gr.State(None)
attached_file_history3 = gr.State(None)
status_display = gr.State("")
status_display2 = gr.State("")
status_display3 = gr.State("")
################################################
# Tab zum Chatbot mit Text oder Bildeingabe
################################################
gr.Markdown(description_top)
with gr.Row():
user_input_validate =gr.Textbox(label= "Bitte das oben im Moodle Kurs angegebene Wort eingeben, um die Anwendung zu starten", visible=True, interactive=True, scale= 7)
validate_btn = gr.Button("Validieren", visible = True)
#validation_result = gr.Text(label="Validierungsergebnis")
with gr.Tab("KKG Chatbot"):
with gr.Row():
#gr.HTML("LI Chatot")
status_display = gr.Markdown("Antwort der KI ...", visible = True) #, elem_id="status_display")
with gr.Row():
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot(elem_id="li-chat",show_copy_button=True)
with gr.Row():
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False, placeholder="Gib hier deinen Prompt ein...",
container=False
)
with gr.Column(min_width=70, scale=1):
submitBtn = gr.Button("Senden")
with gr.Column(min_width=70, scale=1):
cancelBtn = gr.Button("Stop")
with gr.Row():
image_display = gr.Image( visible=False)
upload = gr.UploadButton("📁", file_types=["image", "pdf", "docx", "pptx", "xlsx"], scale = 10)
emptyBtn = gr.ClearButton([user_input, chatbot, history, attached_file, attached_file_history, image_display], value="🧹 Neue Session", scale=10)
with gr.Column():
with gr.Column(min_width=50, scale=1):
#with gr.Tab(label="Chats ..."):
#Geht nicht, da für alle gleichzeitig sichtbar
#chat_selector = gr.CheckboxGroup(label="", choices=update_chat_options())
#download_button = gr.Button("Download ausgewählte Chats")
file_download = gr.File(label="Noch keine Chatsverläufe", visible=True, interactive = False, file_count="multiple",)
with gr.Tab(label="Parameter"):
#gr.Markdown("# Parameters")
#rag_option = gr.Radio(["Aus", "An"], label="KKG Erweiterungen (RAG)", value = "Aus")
model_option = gr.Radio(["HuggingFace"], label="Modellauswahl", value = "HuggingFace")
#websuche = gr.Radio(["Aus", "An"], label="Web-Suche", value = "Aus")
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p",
visible=False,
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=35,
step=1,
interactive=True,
label="Top-k",
visible=False,
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
visible=False
)
max_length_tokens = gr.Slider(
minimum=0,
maximum=512,
value=512,
step=8,
interactive=True,
label="Max Generation Tokens",
visible=False,
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=128,
interactive=True,
label="Max History Tokens",
visible=False,
)
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=False)
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=False)
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1, visible = False)
gr.Markdown(description)
######################################
# Events und Übergabe Werte an Funktionen
#######################################
######################################
# Für Tab 1: Chatbot
#Argumente für generate Funktion als Input
predict_args = dict(
fn=generate_auswahl,
inputs=[
user_question,
attached_file,
attached_file_history,
chatbot,
history,
anzahl_docs,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
repetition_penalty,
top_k,
validate
],
outputs=[chatbot, history, attached_file, attached_file_history, status_display],
show_progress=True,
)
reset_args = dict(
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
)
# Chatbot
transfer_input_args = dict(
fn=add_text, inputs=[chatbot, history, user_input, attached_file, attached_file_history], outputs=[chatbot, history, user_question, attached_file, attached_file_history, image_display , user_input], show_progress=True
)
##############################################
# Button Events....
#Validation Button
# Event-Handler für die Validierung
validate_btn.click(validate_input, inputs=[user_input_validate, validate], outputs=[status_display, validate, user_input_validate, validate_btn])
user_input_validate.submit(validate_input, inputs=[user_input_validate, validate], outputs=[status_display, validate, user_input_validate, validate_btn])
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args)
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args)
predict_event3 = upload.upload(file_anzeigen, [upload], [image_display, image_display, attached_file] ) #.then(**predict_args)
emptyBtn.click(clear_all, [history, uploaded_file_paths, chats], [attached_file, image_display, uploaded_file_paths, history, file_download, chats])
#Bild Anzeige neben dem Button wieder entfernen oder austauschen..
image_display.select(file_loeschen, [], [attached_file, image_display])
#download_button.click(fn=download_chats, inputs=chat_selector, outputs=[file_download])
#Berechnung oder Ausgabe anhalten (kann danach fortgesetzt werden)
cancelBtn.click(cancel_outputing, [], [status_display], cancels=[predict_event1,predict_event2, predict_event3])
demo.title = "KKG-ChatBot"
demo.queue(default_concurrency_limit=15).launch(debug=True)