Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordD
|
|
16 |
from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
17 |
#from langchain.document_loaders import GenericLoader
|
18 |
from langchain.schema import AIMessage, HumanMessage
|
19 |
-
|
20 |
from langchain_huggingface import HuggingFaceEndpoint
|
21 |
from langchain_huggingface import HuggingFaceEmbeddings
|
22 |
from langchain_community.llms import HuggingFaceTextGenInference
|
@@ -206,7 +206,7 @@ def generate_text (prompt, chatbot, history, vektordatenbank, retriever, top_p=0
|
|
206 |
#oder an Hugging Face --------------------------
|
207 |
print("HF Anfrage.......................")
|
208 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
209 |
-
llm =
|
210 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
211 |
# Erstelle eine Pipeline mit den gewünschten Parametern
|
212 |
#pipe = pipeline("text-generation", model=MODEL_NAME_HF , model_kwargs=model_kwargs)
|
|
|
16 |
from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
17 |
#from langchain.document_loaders import GenericLoader
|
18 |
from langchain.schema import AIMessage, HumanMessage
|
19 |
+
from langchain_community.llms import HuggingFaceHub
|
20 |
from langchain_huggingface import HuggingFaceEndpoint
|
21 |
from langchain_huggingface import HuggingFaceEmbeddings
|
22 |
from langchain_community.llms import HuggingFaceTextGenInference
|
|
|
206 |
#oder an Hugging Face --------------------------
|
207 |
print("HF Anfrage.......................")
|
208 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
209 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
|
210 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
211 |
# Erstelle eine Pipeline mit den gewünschten Parametern
|
212 |
#pipe = pipeline("text-generation", model=MODEL_NAME_HF , model_kwargs=model_kwargs)
|