Update app.py
Browse files
app.py
CHANGED
@@ -17,14 +17,6 @@ embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
17 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq", use_auth_token=True)
|
18 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_auth_token=True)
|
19 |
|
20 |
-
|
21 |
-
# Initialisierung des Sentence-BERT Modells für die Embeddings
|
22 |
-
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
23 |
-
|
24 |
-
# Initialisierung von Tokenizer und RAG Modell
|
25 |
-
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
26 |
-
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")
|
27 |
-
|
28 |
# Verbindung zur Chroma DB und Laden der Dokumente
|
29 |
chroma_db = Chroma(embedding_model=embedding_model, persist_directory = PATH_WORK + CHROMA_DIR)
|
30 |
|
|
|
17 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq", use_auth_token=True)
|
18 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_auth_token=True)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Verbindung zur Chroma DB und Laden der Dokumente
|
21 |
chroma_db = Chroma(embedding_model=embedding_model, persist_directory = PATH_WORK + CHROMA_DIR)
|
22 |
|