alexkueck commited on
Commit
b676165
·
verified ·
1 Parent(s): 25942c2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -0
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.chains import RagChain
3
+ from langchain.vectorstores import Chroma
4
+ from transformers import RagTokenizer, RagSequenceForGeneration
5
+ from sentence_transformers import SentenceTransformer
6
+
7
+ # Initialisierung des Sentence-BERT Modells für die Embeddings
8
+ embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
9
+
10
+ # Initialisierung von Tokenizer und RAG Modell
11
+ tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
12
+ model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")
13
+
14
+ # Verbindung zur Chroma DB und Laden der Dokumente
15
+ chroma_db = Chroma(embedding_model=embedding_model, persist_directory = PATH_WORK + CHROMA_DIR)
16
+
17
+ # Erstellen eines eigenen Retrievers mit Chroma DB und Embeddings
18
+ retriever = chroma_db.as_retriever()
19
+
20
+ # Erstellung der RAG-Kette mit dem benutzerdefinierten Retriever
21
+ rag_chain = RagChain(model=model, retriever=retriever, tokenizer=tokenizer, vectorstore=chroma_db)
22
+ #############################################
23
+
24
+
25
+ def document_retrieval_chroma2():
26
+ #HF embeddings -----------------------------------
27
+ #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
28
+ embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
29
+ #etwas weniger rechenaufwendig:
30
+ #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
31
+ #oder einfach ohne Langchain:
32
+ #embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
33
+
34
+ #ChromaDb um die embedings zu speichern
35
+ db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
36
+ print ("Chroma DB bereit ...................")
37
+
38
+ return db
39
+
40
+
41
+
42
+ def get_rag_response(prompt):
43
+ global rag_chain
44
+ #rag-chain nutzen, um Antwort zu generieren
45
+ result = rag_chain({Frage: } : prompt)
46
+
47
+ #relevante Dokumente extrahieren
48
+ docs = result['docs']
49
+ passages = [doc['text'] for doc in docs]
50
+ links = doc['url'] for doc in docs
51
+
52
+ #Antwort generieren
53
+ answer = result['output']
54
+ response = {
55
+ "answer" : answer,
56
+ "documents" : [{"link" : link, "passage" : passage} for link, passage in zip(links, passages)]
57
+ }
58
+ return response
59
+
60
+
61
+ def chatbot_response (user_input, chat_history=[]):
62
+ response = get_rag_response(user_input)
63
+ answer = response['answer']
64
+ documents = response['documents']
65
+ doc_links = "\n\n".join([f"Link: {doc['link']} \nAuszüge der Dokumente: {doc['passage']}" for doc in documents])
66
+ bot_response = f"{answer} \n\nRelevante Dokumente: \n{doc_links}"
67
+
68
+ chat_history.append((user_inptu, bot_response))
69
+
70
+ return chat_history, chat_history
71
+
72
+
73
+ #############################
74
+ #GUI.........
75
+ def user (user_input, history):
76
+ return "", history + [[user_input, None]]
77
+
78
+ with gr.Blocks() as chatbot:
79
+ chat_interface = gr.Chatbot()
80
+ msg = gr.Textbox()
81
+ clear = gr.Button("Löschen")
82
+
83
+ #Buttons listener
84
+ msg.submit(user, [msg, chat_interface], [msg, chat_interface], queue = False). then(chatbot_response, [msg, chat_interface], [chat_interface, chat_interface])
85
+
86
+ clear.click(lambda: None, None, chat_interface, queue=False)
87
+
88
+ chatbot.launch()