alexkueck commited on
Commit
df212cb
·
verified ·
1 Parent(s): 3840048

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -4
app.py CHANGED
@@ -43,6 +43,24 @@ CHROMA_EXCEL = './chroma/kkg/excel'
43
  #HuggingFace Model name--------------------------------
44
  MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  # Hugging Face Token direkt im Code setzen
47
  hf_token = os.getenv("HF_READ")
48
  os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_READ")
@@ -187,13 +205,12 @@ def generate_text (prompt, chatbot, history, vektordatenbank, retriever, top_p=0
187
  #oder an Hugging Face --------------------------
188
  print("HF Anfrage.......................")
189
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
190
- #llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
191
  #llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
192
  # Erstelle eine Pipeline mit den gewünschten Parametern
193
- pipe = pipeline("text-generation", model=MODEL_NAME_HF , model_kwargs=model_kwargs)
194
-
195
  # Erstelle eine HuggingFacePipeline-Kette
196
- llm = HuggingFacePipeline(pipeline=pipe)
197
 
198
  #Prompt an history anhängen und einen Text daraus machen
199
  history_text_und_prompt = generate_prompt_with_history(prompt, history)
 
43
  #HuggingFace Model name--------------------------------
44
  MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
45
 
46
+ #HuggingFace Reop ID--------------------------------
47
+ #repo_id = "meta-llama/Llama-2-13b-chat-hf"
48
+ repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
49
+ #repo_id = "TheBloke/Yi-34B-Chat-GGUF"
50
+ #repo_id = "meta-llama/Llama-2-70b-chat-hf"
51
+ #repo_id = "tiiuae/falcon-40b"
52
+ #repo_id = "Vicuna-33b"
53
+ #repo_id = "alexkueck/ChatBotLI2Klein"
54
+ #repo_id = "mistralai/Mistral-7B-v0.1"
55
+ #repo_id = "internlm/internlm-chat-7b"
56
+ #repo_id = "Qwen/Qwen-7B"
57
+ #repo_id = "Salesforce/xgen-7b-8k-base"
58
+ #repo_id = "Writer/camel-5b-hf"
59
+ #repo_id = "databricks/dolly-v2-3b"
60
+ #repo_id = "google/flan-t5-xxl"
61
+ #repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
62
+ #repo_id = "abacusai/Smaug-72B-v0.1"
63
+
64
  # Hugging Face Token direkt im Code setzen
65
  hf_token = os.getenv("HF_READ")
66
  os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_READ")
 
205
  #oder an Hugging Face --------------------------
206
  print("HF Anfrage.......................")
207
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
208
+ llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
209
  #llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
210
  # Erstelle eine Pipeline mit den gewünschten Parametern
211
+ #pipe = pipeline("text-generation", model=MODEL_NAME_HF , model_kwargs=model_kwargs)
 
212
  # Erstelle eine HuggingFacePipeline-Kette
213
+ #llm = HuggingFacePipeline(pipeline=pipe)
214
 
215
  #Prompt an history anhängen und einen Text daraus machen
216
  history_text_und_prompt = generate_prompt_with_history(prompt, history)