Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,8 @@ from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordD
|
|
16 |
from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
17 |
#from langchain.document_loaders import GenericLoader
|
18 |
from langchain.schema import AIMessage, HumanMessage
|
19 |
-
from langchain_community.llms import HuggingFaceHub
|
|
|
20 |
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
from langchain_community.llms import HuggingFaceTextGenInference
|
22 |
#from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
@@ -24,7 +25,7 @@ from langchain.prompts import PromptTemplate
|
|
24 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
25 |
from langchain_community.vectorstores import Chroma
|
26 |
from chromadb.errors import InvalidDimensionException
|
27 |
-
from
|
28 |
from transformers import pipeline
|
29 |
from utils import *
|
30 |
from beschreibungen import *
|
@@ -205,7 +206,7 @@ def generate_text (prompt, chatbot, history, vektordatenbank, retriever, top_p=0
|
|
205 |
#oder an Hugging Face --------------------------
|
206 |
print("HF Anfrage.......................")
|
207 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
208 |
-
llm =
|
209 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
210 |
# Erstelle eine Pipeline mit den gewünschten Parametern
|
211 |
#pipe = pipeline("text-generation", model=MODEL_NAME_HF , model_kwargs=model_kwargs)
|
|
|
16 |
from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
17 |
#from langchain.document_loaders import GenericLoader
|
18 |
from langchain.schema import AIMessage, HumanMessage
|
19 |
+
#from langchain_community.llms import HuggingFaceHub
|
20 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
21 |
from langchain_huggingface import HuggingFaceEmbeddings
|
22 |
from langchain_community.llms import HuggingFaceTextGenInference
|
23 |
#from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
|
|
25 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
26 |
from langchain_community.vectorstores import Chroma
|
27 |
from chromadb.errors import InvalidDimensionException
|
28 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
29 |
from transformers import pipeline
|
30 |
from utils import *
|
31 |
from beschreibungen import *
|
|
|
206 |
#oder an Hugging Face --------------------------
|
207 |
print("HF Anfrage.......................")
|
208 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
209 |
+
llm = HuggingFaceEndpoint(repo_id=repo_id, model_kwargs=model_kwargs)
|
210 |
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
211 |
# Erstelle eine Pipeline mit den gewünschten Parametern
|
212 |
#pipe = pipeline("text-generation", model=MODEL_NAME_HF , model_kwargs=model_kwargs)
|