alexkueck commited on
Commit
f11b18f
·
verified ·
1 Parent(s): 4d00884

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +4 -3
utils.py CHANGED
@@ -35,7 +35,8 @@ from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordD
35
  from langchain.schema import AIMessage, HumanMessage
36
  from langchain_community.llms import HuggingFaceHub
37
  from langchain_community.llms import HuggingFaceTextGenInference
38
- from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
 
39
  from langchain_community.tools import DuckDuckGoSearchRun
40
  from typing import Dict, TypedDict
41
  from langchain_core.messages import BaseMessage
@@ -224,9 +225,9 @@ def document_storage_chroma(splits):
224
  def document_retrieval_chroma(llm, prompt):
225
  #HF embeddings -----------------------------------
226
  #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
227
- embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
228
  #etwas weniger rechenaufwendig:
229
- #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
230
 
231
  #ChromaDb um die embedings zu speichern
232
  db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
 
35
  from langchain.schema import AIMessage, HumanMessage
36
  from langchain_community.llms import HuggingFaceHub
37
  from langchain_community.llms import HuggingFaceTextGenInference
38
+ #from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
39
+ from langchain_huggingface import HuggingFaceEmbeddings
40
  from langchain_community.tools import DuckDuckGoSearchRun
41
  from typing import Dict, TypedDict
42
  from langchain_core.messages import BaseMessage
 
225
  def document_retrieval_chroma(llm, prompt):
226
  #HF embeddings -----------------------------------
227
  #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
228
+ #embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
229
  #etwas weniger rechenaufwendig:
230
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
231
 
232
  #ChromaDb um die embedings zu speichern
233
  db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)