File size: 8,332 Bytes
0467ec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import streamlit as st
from PIL import Image
import codecs
import streamlit.components.v1 as components
from utils import inject_custom_css
import streamlit as st
from streamlit_plotly_events import plotly_events
import pickle
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import typing as tp

plt.style.use('default')

shapes=[
    dict(
        type="rect",
        xref="paper",
        yref="paper",
        x0=0,
        y0=0,
        x1=1,
        y1=1,
        line=dict(
            color="Black",
            width=2,
        ),
    )
]

import colorsys

def interpolate_color(color1, color2, factor):
    """Interpolates between two RGB colors. Factor is between 0 and 1."""
    color1 = colorsys.rgb_to_hls(int(color1[1:3], 16)/255.0, int(color1[3:5], 16)/255.0, int(color1[5:], 16)/255.0)
    color2 = colorsys.rgb_to_hls(int(color2[1:3], 16)/255.0, int(color2[3:5], 16)/255.0, int(color2[5:], 16)/255.0)
    new_color = [color1[i] * (1 - factor) + color2[i] * factor for i in range(3)]
    new_color = colorsys.hls_to_rgb(*new_color)
    return '#{:02x}{:02x}{:02x}'.format(int(new_color[0]*255), int(new_color[1]*255), int(new_color[2]*255))


color1 = "#fa7659"
color2 = "#6dafd7"

def plot_pareto(dict_results: tp.Dict):
    keys = list(dict_results["wa"][0].keys())
    lambda_key, reward2_key, reward1_key = keys

    # Series for "wa"
    dict_results["wa"] = [x for i,x in enumerate(dict_results["wa"]) if i%2==0]
    lambda_values_wa = [item[lambda_key] for item in dict_results["wa"]][::-1]
    reward1_values_wa = [item[reward1_key] for item in dict_results["wa"]][::-1]
    reward2_values_wa = [item[reward2_key] for item in dict_results["wa"]][::-1]

    # Series for "init"
    reward1_values_init = [item[reward1_key] for item in dict_results["init"]]
    reward2_values_init = [item[reward2_key] for item in dict_results["init"]]

    layout = go.Layout(autosize=False,width=1000,height=1000)
    fig = go.Figure(layout=layout)

    for i in range(len(reward1_values_wa) - 1):
        fig.add_trace(go.Scatter(
            x=reward1_values_wa[i:i+2],
            y=reward2_values_wa[i:i+2],
            mode='lines',
            hoverinfo='skip',
            line=dict(
                color=interpolate_color(color1, color2, i/(len(reward1_values_wa)-1)),
                width=2
            ),
            showlegend=False
        ))

    # Plot for "wa"
    fig.add_trace(
        go.Scatter(
            x=reward1_values_wa,
            y=reward2_values_wa,
            mode='markers',
            name='Rewarded soups: 0鈮の烩墹1',
            hoverinfo='text',
            hovertext=[f'位={lmbda}' for lmbda in lambda_values_wa],
            marker=dict(
                color=[
                    interpolate_color(color1, color2, i / len(lambda_values_wa))
                    for i in range(len(lambda_values_wa))
                ],
                size=10
            )
        )
    )

    # Plot for "morl"
    fig.add_trace(
        go.Scatter(
            x=[6400.],
            y=[3300.],
            mode='markers',
            name='MORL: 渭=0.5',
            hoverinfo='skip',
            marker=dict(color='#A45EE9', size=15, symbol="star"),
        )
    )
    # Plot for "init"
    fig.add_trace(
        go.Scatter(
            x=reward1_values_init,
            y=reward2_values_init,
            mode='markers',
            name='Pre-trained init',
            hoverinfo='skip',
            marker=dict(color='#9f9bc8', size=15, symbol="star"),
        )
    )

    fig.update_layout(
        xaxis=dict(
            range=[3000, 7000],
            nticks=6,
            showticklabels=True,
            ticks='outside',
            tickfont=dict(size=18,),
            title=dict(text="Risky reward", font=dict(size=18), standoff=10),
            showgrid=False,
            zeroline=False,
            hoverformat='.2f'
        ),
        yaxis=dict(
            range=[-1000, 4500],
            nticks=7,
            showticklabels=True,
            ticks='outside',
            tickfont=dict(size=18,),
            title=dict(text="Cautious reward", font=dict(size=18), standoff=10),
            showgrid=False,
            zeroline=False,
            hoverformat='.2f'
        ),
        font=dict(family="Roboto", size=12, color="Black"),
        hovermode='x unified',
        autosize=False,
        width=500,
        height=500,
        margin=dict(l=100, r=50, b=150, t=20, pad=0),
        paper_bgcolor="White",
        plot_bgcolor="White",
        shapes=shapes,
        legend=dict(
            x=0.5,
            y=0.03,
            traceorder="normal",
            font=dict(family="Roboto", size=12, color="black"),
            bgcolor="White",
            bordercolor="Black",
            borderwidth=1
        )
    )

    return fig

def run():

    st.write(
        f"""
        <link href='http://fonts.googleapis.com/css?family=Roboto' rel='stylesheet' type='text/css'>
        <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
        <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML">
        </script>
        <h3 style='text-align: left;';>Making humanoid run more naturally with diverse engineered rewards</h3>""",unsafe_allow_html=True)

    st.markdown(
        r"""
Teaching humanoids to walk in a human-like manner serves as a benchmark to evaluate RL strategies for continuous control. One of the key challenges is shaping a suitable proxy reward, given the intricate coordination and balance involved in human locomotion. It is standard to consider the dense reward at each timestep: ${r(t)=velocity-\alpha \times \sum_t a^{2}_{t}}$, controlling the agent's velocity while penalizing wide actions. Yet, the penalty coefficient $\alpha$ is challenging to set. To tackle this, we devised two rewards in the Brax physics engine: a *risky* one with $\alpha=0$, and a *cautious* one $\alpha=1$.

Below in the interactive animation, you will see the humanoids trained with these two rewards: the humanoid for $\alpha=0$ is the fastest but the most chaotic, while the one for $\alpha=1$ is more cautious but slower. For intermediate values of $\lambda$, the policy is obtained by linear interpolation of those extreme weights, arguably resulting in smoother motion patterns.
""", unsafe_allow_html=True
    )
    st.markdown("""<h3 style='text-align: left;';>Click on a rewarded soup point!</h3>""",unsafe_allow_html=True)

    files = []
    for i in range(21):
        filename = f'streamlit_app/data/locomotion/trajectories/{i}.html'
        files.append(codecs.open(filename, "r", "utf-8").read())
    files = [x for i,x in enumerate(files) if i%2==0]

    row_0_1,row_0_2,row_0_3,row_0_4  = st.columns([3,1,1,1])
    with row_0_1:
        with open("streamlit_app/data/locomotion/pareto/humanoid_averse_taker_with_morl.pkl","rb") as f:
            dict_results = pickle.load(f)
        fig = plot_pareto(dict_results)
        onclick = plotly_events(fig, click_event=True)
    with row_0_4:
        st.markdown(f"""<div style='text-align: left; color: {color1}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=1.0</div>""",unsafe_allow_html=True)
        components.html(files[-1],width=150,height=300)
    with row_0_3:
        if len(onclick) > 0:
            idx = onclick[-1]['pointIndex']
        else:
            idx = 5
        st.markdown(
            f"""<div style='text-align: left; color: {interpolate_color(color1, color2, round(1- idx/(len(files)-1),2))}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位={round(1-idx/(len(files)-1),2)}</div>""",
            unsafe_allow_html=True
        )
        components.html(files[idx], width=150, height=300)
    with row_0_2:
        st.markdown(f"""<div style='text-align: left; color: {color2}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=0.0</div>""",unsafe_allow_html=True)
        components.html(files[0],width=150,height=300)


if __name__ == "__main__":
    img = Image.open("streamlit_app/assets/images/icon.png")
    st.set_page_config(page_title="Rewarded soups",page_icon=img,layout="wide")
    inject_custom_css("streamlit_app/assets/styles.css")
    st.set_option('deprecation.showPyplotGlobalUse', False)
    run()