Spaces:
Runtime error
Runtime error
File size: 8,332 Bytes
0467ec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import streamlit as st
from PIL import Image
import codecs
import streamlit.components.v1 as components
from utils import inject_custom_css
import streamlit as st
from streamlit_plotly_events import plotly_events
import pickle
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import typing as tp
plt.style.use('default')
shapes=[
dict(
type="rect",
xref="paper",
yref="paper",
x0=0,
y0=0,
x1=1,
y1=1,
line=dict(
color="Black",
width=2,
),
)
]
import colorsys
def interpolate_color(color1, color2, factor):
"""Interpolates between two RGB colors. Factor is between 0 and 1."""
color1 = colorsys.rgb_to_hls(int(color1[1:3], 16)/255.0, int(color1[3:5], 16)/255.0, int(color1[5:], 16)/255.0)
color2 = colorsys.rgb_to_hls(int(color2[1:3], 16)/255.0, int(color2[3:5], 16)/255.0, int(color2[5:], 16)/255.0)
new_color = [color1[i] * (1 - factor) + color2[i] * factor for i in range(3)]
new_color = colorsys.hls_to_rgb(*new_color)
return '#{:02x}{:02x}{:02x}'.format(int(new_color[0]*255), int(new_color[1]*255), int(new_color[2]*255))
color1 = "#fa7659"
color2 = "#6dafd7"
def plot_pareto(dict_results: tp.Dict):
keys = list(dict_results["wa"][0].keys())
lambda_key, reward2_key, reward1_key = keys
# Series for "wa"
dict_results["wa"] = [x for i,x in enumerate(dict_results["wa"]) if i%2==0]
lambda_values_wa = [item[lambda_key] for item in dict_results["wa"]][::-1]
reward1_values_wa = [item[reward1_key] for item in dict_results["wa"]][::-1]
reward2_values_wa = [item[reward2_key] for item in dict_results["wa"]][::-1]
# Series for "init"
reward1_values_init = [item[reward1_key] for item in dict_results["init"]]
reward2_values_init = [item[reward2_key] for item in dict_results["init"]]
layout = go.Layout(autosize=False,width=1000,height=1000)
fig = go.Figure(layout=layout)
for i in range(len(reward1_values_wa) - 1):
fig.add_trace(go.Scatter(
x=reward1_values_wa[i:i+2],
y=reward2_values_wa[i:i+2],
mode='lines',
hoverinfo='skip',
line=dict(
color=interpolate_color(color1, color2, i/(len(reward1_values_wa)-1)),
width=2
),
showlegend=False
))
# Plot for "wa"
fig.add_trace(
go.Scatter(
x=reward1_values_wa,
y=reward2_values_wa,
mode='markers',
name='Rewarded soups: 0鈮の烩墹1',
hoverinfo='text',
hovertext=[f'位={lmbda}' for lmbda in lambda_values_wa],
marker=dict(
color=[
interpolate_color(color1, color2, i / len(lambda_values_wa))
for i in range(len(lambda_values_wa))
],
size=10
)
)
)
# Plot for "morl"
fig.add_trace(
go.Scatter(
x=[6400.],
y=[3300.],
mode='markers',
name='MORL: 渭=0.5',
hoverinfo='skip',
marker=dict(color='#A45EE9', size=15, symbol="star"),
)
)
# Plot for "init"
fig.add_trace(
go.Scatter(
x=reward1_values_init,
y=reward2_values_init,
mode='markers',
name='Pre-trained init',
hoverinfo='skip',
marker=dict(color='#9f9bc8', size=15, symbol="star"),
)
)
fig.update_layout(
xaxis=dict(
range=[3000, 7000],
nticks=6,
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="Risky reward", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
yaxis=dict(
range=[-1000, 4500],
nticks=7,
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="Cautious reward", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
font=dict(family="Roboto", size=12, color="Black"),
hovermode='x unified',
autosize=False,
width=500,
height=500,
margin=dict(l=100, r=50, b=150, t=20, pad=0),
paper_bgcolor="White",
plot_bgcolor="White",
shapes=shapes,
legend=dict(
x=0.5,
y=0.03,
traceorder="normal",
font=dict(family="Roboto", size=12, color="black"),
bgcolor="White",
bordercolor="Black",
borderwidth=1
)
)
return fig
def run():
st.write(
f"""
<link href='http://fonts.googleapis.com/css?family=Roboto' rel='stylesheet' type='text/css'>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML">
</script>
<h3 style='text-align: left;';>Making humanoid run more naturally with diverse engineered rewards</h3>""",unsafe_allow_html=True)
st.markdown(
r"""
Teaching humanoids to walk in a human-like manner serves as a benchmark to evaluate RL strategies for continuous control. One of the key challenges is shaping a suitable proxy reward, given the intricate coordination and balance involved in human locomotion. It is standard to consider the dense reward at each timestep: ${r(t)=velocity-\alpha \times \sum_t a^{2}_{t}}$, controlling the agent's velocity while penalizing wide actions. Yet, the penalty coefficient $\alpha$ is challenging to set. To tackle this, we devised two rewards in the Brax physics engine: a *risky* one with $\alpha=0$, and a *cautious* one $\alpha=1$.
Below in the interactive animation, you will see the humanoids trained with these two rewards: the humanoid for $\alpha=0$ is the fastest but the most chaotic, while the one for $\alpha=1$ is more cautious but slower. For intermediate values of $\lambda$, the policy is obtained by linear interpolation of those extreme weights, arguably resulting in smoother motion patterns.
""", unsafe_allow_html=True
)
st.markdown("""<h3 style='text-align: left;';>Click on a rewarded soup point!</h3>""",unsafe_allow_html=True)
files = []
for i in range(21):
filename = f'streamlit_app/data/locomotion/trajectories/{i}.html'
files.append(codecs.open(filename, "r", "utf-8").read())
files = [x for i,x in enumerate(files) if i%2==0]
row_0_1,row_0_2,row_0_3,row_0_4 = st.columns([3,1,1,1])
with row_0_1:
with open("streamlit_app/data/locomotion/pareto/humanoid_averse_taker_with_morl.pkl","rb") as f:
dict_results = pickle.load(f)
fig = plot_pareto(dict_results)
onclick = plotly_events(fig, click_event=True)
with row_0_4:
st.markdown(f"""<div style='text-align: left; color: {color1}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=1.0</div>""",unsafe_allow_html=True)
components.html(files[-1],width=150,height=300)
with row_0_3:
if len(onclick) > 0:
idx = onclick[-1]['pointIndex']
else:
idx = 5
st.markdown(
f"""<div style='text-align: left; color: {interpolate_color(color1, color2, round(1- idx/(len(files)-1),2))}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位={round(1-idx/(len(files)-1),2)}</div>""",
unsafe_allow_html=True
)
components.html(files[idx], width=150, height=300)
with row_0_2:
st.markdown(f"""<div style='text-align: left; color: {color2}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=0.0</div>""",unsafe_allow_html=True)
components.html(files[0],width=150,height=300)
if __name__ == "__main__":
img = Image.open("streamlit_app/assets/images/icon.png")
st.set_page_config(page_title="Rewarded soups",page_icon=img,layout="wide")
inject_custom_css("streamlit_app/assets/styles.css")
st.set_option('deprecation.showPyplotGlobalUse', False)
run()
|