Spaces:
Runtime error
Runtime error
File size: 9,462 Bytes
0467ec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import streamlit as st
from PIL import Image
import codecs
import streamlit.components.v1 as components
from utils import inject_custom_css
import streamlit as st
from streamlit_plotly_events import plotly_events
import pickle
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import typing as tp
import colorsys
plt.style.use('default')
def interpolate_color(color1, color2, factor):
"""Interpolates between two RGB colors. Factor is between 0 and 1."""
color1 = colorsys.rgb_to_hls(int(color1[1:3], 16)/255.0, int(color1[3:5], 16)/255.0, int(color1[5:], 16)/255.0)
color2 = colorsys.rgb_to_hls(int(color2[1:3], 16)/255.0, int(color2[3:5], 16)/255.0, int(color2[5:], 16)/255.0)
new_color = [color1[i] * (1 - factor) + color2[i] * factor for i in range(3)]
new_color = colorsys.hls_to_rgb(*new_color)
return '#{:02x}{:02x}{:02x}'.format(int(new_color[0]*255), int(new_color[1]*255), int(new_color[2]*255))
color1 = "#fa7659"
color2 = "#6dafd7"
shapes=[
dict(
type="rect",
xref="paper",
yref="paper",
x0=0,
y0=0,
x1=1,
y1=1,
line=dict(
color="Black",
width=2,
),
)
]
def plot_pareto(dict_results: tp.Dict):
reward1_key = "ava"
reward2_key = "cafe"
# Series for "wa"
lambda_values_wa = [round(1 - i/(len(dict_results["wa_d"])-1),2) for i in range(len(dict_results["wa_d"]))]
reward1_values_wa = [item[reward1_key] for item in dict_results["wa_d"]]
reward2_values_wa = [item[reward2_key] for item in dict_results["wa_d"]]
# Series for "morl"
mu_values_morl = [round(1 - i/(len(dict_results["morl_d"])-1),2) for i in range(len(dict_results["morl_d"]))]
reward1_values_morl = [item[reward1_key] for item in dict_results["morl_d"]][3]
reward2_values_morl = [item[reward2_key] for item in dict_results["morl_d"]][3]
# Series for "init"
reward1_values_init = [dict_results["init"][reward1_key]]
reward2_values_init = [dict_results["init"][reward2_key]]
layout = go.Layout(autosize=False,width=1000,height=1000)
fig = go.Figure(layout=layout)
for i in range(len(reward1_values_wa) - 1):
fig.add_trace(go.Scatter(
x=reward1_values_wa[i:i+2],
y=reward2_values_wa[i:i+2],
mode='lines',
hoverinfo='skip',
line=dict(
color=interpolate_color(color1, color2, i/(len(reward1_values_wa)-1)),
width=2
),
showlegend=False
))
# Plot for "wa"
fig.add_trace(
go.Scatter(
x=reward1_values_wa,
y=reward2_values_wa,
mode='markers',
name='Rewarded soups: 0鈮の烩墹1',
hoverinfo='text',
hovertext=[f'位={lmbda}' for lmbda in lambda_values_wa],
marker=dict(
color=[
interpolate_color(color1, color2, i / len(lambda_values_wa))
for i in range(len(lambda_values_wa))
],
size=10
)
)
)
# Plot for "morl"
fig.add_trace(
go.Scatter(
x=[reward1_values_morl],
y=[reward2_values_morl],
mode='markers',
name='MORL: 渭=0.5',
hoverinfo='skip',
marker=dict(color='#A45EE9', size=15, symbol="star")
)
)
# Plot for "init"
fig.add_trace(
go.Scatter(
x=reward1_values_init,
y=reward2_values_init,
mode='markers',
name='Pre-trained init',
hoverinfo='skip',
marker=dict(color='#9f9bc8', size=15, symbol="star"),
)
)
fig.update_layout(
xaxis=dict(
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="Ava reward", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
yaxis=dict(
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="Cafe reward", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
font=dict(family="Roboto", size=12, color="Black"),
hovermode='x unified',
autosize=False,
width=500,
height=500,
margin=dict(l=100, r=50, b=150, t=20, pad=0),
paper_bgcolor="White",
plot_bgcolor="White",
shapes=shapes,
legend=dict(
x=0.5,
y=0.03,
traceorder="normal",
font=dict(family="Roboto", size=12, color="black"),
bgcolor="White",
bordercolor="Black",
borderwidth=1
)
)
return fig
def run():
st.write(
f"""
<link href='http://fonts.googleapis.com/css?family=Roboto' rel='stylesheet' type='text/css'>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML">
</script>
<h3 style='text-align: left;';>RLHF of diffusion model for diverse human aesthetics</h3>""",unsafe_allow_html=True)
st.markdown(
r"""
Beyond text generation, we now apply RS to align text-to-image generation with human feedbacks.
Here, we demonstrate how rewarded soups allows to interpolate between models fine-tuned for different aesthetic metrics.
Our network is a diffusion model with 2.2B parameters, pre-trained on an internal dataset of 300M images; it reaches similar quality as Stable Diffusion, which was not used for copyright reasons.
To represent the subjectivity of human aesthetics, we employ $N=2$ open-source reward models: [*ava*](https://github.com/christophschuhmann/improved-aesthetic-predictor/), trained on the AVA dataset, and [*cafe*](https://huggingface.co/cafeai/cafe_aesthetic), trained on a mix of real-life and manga images.
We first generate 10000 images; then, for each reward, we remove half of the images with the lowest reward's score and fine-tune 10\% of the parameters on the reward-weighted negative log-likelihood.
Our results below show that interpolating between the expert models unveils a Pareto-optimal front, enabling alignment with a variety of aesthetic preferences.
Specifically, all interpolated models produce images of similar quality compared to fine-tuned models, demonstrating linear mode connectivity between the two fine-tuned models.
This ability to adapt at test time paves the way for a new form of user interaction with text-to-image models, beyond prompt engineering.
""",
unsafe_allow_html=True
)
st.markdown("""<h3 style='text-align: left;';>Click on a rewarded soup point on the left and select a prompt on the right!</h3>""",unsafe_allow_html=True)
files = []
with open("streamlit_app/data/imgen/data.pkl","rb") as f:
data = pickle.load(f)
with open("streamlit_app/data/imgen/data_images.pkl","rb") as f:
data_images = pickle.load(f)
row_0_1,row_0_2 = st.columns([2,3])
with row_0_1:
fig = plot_pareto(data)
onclick = plotly_events(fig, click_event=True)
with row_0_2:
option = st.selectbox('',data_images.keys())
for i in range(11):
filename = f'https://github.com/continual-subspace/hidden_soup/blob/main/{data_images[option]["filename"]}_{i}.png?raw=true'
files.append(filename)
row_1_1,row_1_2,row_1_3 = st.columns([1,1,1])
if len(onclick) > 0:
idx = onclick[-1]['pointIndex']
else:
idx = 5
img = files[idx]
bgcolor = interpolate_color(color2,color1,round(1 - idx/(len(files)-1),2))
lambda2 = round(1 - idx/(len(files)-1),2)
img1 = files[0]
img0 = files[-1]
st.markdown(
f"""
<div class="promptTextbox">
<div class="promptHeader">
Generated images:
</div>
<div class="imgContent">
<div class="imgContainer">
<div class="imglambda-header" >位=0.0</div>
<div class="imglambdas" style='background-color: {color2};'><img src='{img0}' alt='{img0}'></div>
</div>
<div class="imgContainer">
<div class="imglambda-header" >位={lambda2}</div>
<div class="imglambdas" style='background-color: {bgcolor};'><img src='{img}' alt='{img}'></div>
</div>
<div class="imgContainer">
<div class="imglambda-header" >位=1.0</div>
<div class="imglambdas" style='background-color: {color1};'><img src='{img1}' alt='{img1}'></div>
</div>
</div>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
img = Image.open("streamlit_app/assets/images/icon.png")
st.set_page_config(page_title="Rewarded soups",page_icon=img,layout="wide")
inject_custom_css("streamlit_app/assets/styles.css")
st.set_option('deprecation.showPyplotGlobalUse', False)
run()
|