Spaces:
Runtime error
Runtime error
File size: 10,253 Bytes
0467ec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import streamlit as st
from PIL import Image
import codecs
import streamlit.components.v1 as components
from utils import inject_custom_css
import streamlit as st
from streamlit_plotly_events import plotly_events
import pickle
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import typing as tp
import colorsys
plt.style.use('default')
plt.rcParams['text.usetex'] = True
plt.rcParams['font.family'] = 'serif'
def interpolate_color(color1, color2, factor):
"""Interpolates between two RGB colors. Factor is between 0 and 1."""
color1 = colorsys.rgb_to_hls(
int(color1[1:3], 16) / 255.0,
int(color1[3:5], 16) / 255.0,
int(color1[5:], 16) / 255.0
)
color2 = colorsys.rgb_to_hls(
int(color2[1:3], 16) / 255.0,
int(color2[3:5], 16) / 255.0,
int(color2[5:], 16) / 255.0
)
new_color = [color1[i] * (1 - factor) + color2[i] * factor for i in range(3)]
new_color = colorsys.hls_to_rgb(*new_color)
return '#{:02x}{:02x}{:02x}'.format(
int(new_color[0] * 255), int(new_color[1] * 255), int(new_color[2] * 255)
)
color1 = "#fa7659"
color2 = "#6dafd7"
shapes = [
dict(
type="rect",
xref="paper",
yref="paper",
x0=0,
y0=0,
x1=1,
y1=1,
line=dict(
color="Black",
width=2,
),
)
]
shapes = [
dict(
type="rect",
xref="paper",
yref="paper",
x0=0,
y0=0,
x1=1,
y1=1,
line=dict(
color="Black",
width=2,
),
)
]
def plot_pareto(dict_results: tp.Dict):
reward1_key = "R1"
reward2_key = "R2"
# Series for "wa"
dict_results["wa_d"] = [x for i, x in enumerate(dict_results["wa_d"]) if i % 2 == 0]
lambda_values_wa = [
round(i / (len(dict_results["wa_d"]) - 1), 2) for i in range(len(dict_results["wa_d"]))
][::-1]
reward1_values_wa = [item[reward1_key] for item in dict_results["wa_d"]]
reward2_values_wa = [item[reward2_key] for item in dict_results["wa_d"]]
# Series for "morl"
# Series for "init"
reward1_values_morl = [dict_results["morl"][reward1_key]]
reward2_values_morl = [dict_results["morl"][reward2_key]]
# Series for "init"
reward1_values_init = [dict_results["init"][reward1_key]]
reward2_values_init = [dict_results["init"][reward2_key]]
layout = go.Layout(autosize=False, width=1000, height=1000)
fig = go.Figure(layout=layout)
for i in range(len(reward1_values_wa) - 1):
fig.add_trace(
go.Scatter(
x=reward1_values_wa[i:i + 2],
y=reward2_values_wa[i:i + 2],
mode='lines',
hoverinfo='skip',
line=dict(
color=interpolate_color(color1, color2, i / (len(reward1_values_wa) - 1)),
width=2
),
showlegend=False
)
)
# Plot for "wa"
fig.add_trace(
go.Scatter(
x=reward1_values_wa,
y=reward2_values_wa,
mode='markers',
name='Rewarded soups: 0≤λ≤1',
hoverinfo='text',
hovertext=[f'λ={lmbda}' for lmbda in lambda_values_wa],
marker=dict(
color=[
interpolate_color(color1, color2, i / len(lambda_values_wa))
for i in range(len(lambda_values_wa))
],
size=10
)
)
)
# Plot for "morl"
fig.add_trace(
go.Scatter(
x=reward1_values_morl,
y=reward2_values_morl,
mode='markers',
name='MORL: μ=0.5',
hoverinfo='skip',
marker=dict(color='#A45EE9', size=15, symbol="star"),
)
)
# Plot for "init"
fig.add_trace(
go.Scatter(
x=reward1_values_init,
y=reward2_values_init,
mode='markers',
name='Pre-trained init',
hoverinfo='skip',
marker=dict(color='#9f9bc8', size=15, symbol="star"),
)
)
fig.update_layout(
xaxis=dict(
#range = [5.21,5.31],
#nticks=6,
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="R1", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
yaxis=dict(
#range = [0.78,0.825],
#nticks=7,
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="R2", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
font=dict(family="Roboto", size=12, color="Black"),
hovermode='x unified',
autosize=False,
width=500,
height=500,
margin=dict(l=100, r=50, b=150, t=20, pad=0),
paper_bgcolor="White",
plot_bgcolor="White",
shapes=shapes,
legend=dict(
x=0.5,
y=0.03,
traceorder="normal",
font=dict(family="Roboto", size=12, color="black"),
bgcolor="White",
bordercolor="Black",
borderwidth=1
)
)
return fig
def run():
st.write(
f"""
<link href='http://fonts.googleapis.com/css?family=Roboto' rel='stylesheet' type='text/css'>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML">
</script>
<h3 style='text-align: left;';>RLHF of LLaMA for diverse news summarization</h3>""",
unsafe_allow_html=True
)
st.markdown(
r"""
Given the importance of RLHF to train LLMs, we begin our experiments with text-to-text generation.
Our pre-trained network is LLaMA-7b, instruction fine-tuned on Alpaca.
For RL training with PPO, we employ the trl package and the setup from with low-rank adapters (LoRA) for efficiency.
Here we consider summarization on Reuter news.
To evaluate the summary in the absence of supervision, we utilized two different reward models, available on HuggingFace: [$R_1$](https://huggingface.co/Tristan/gpt2_reward_summarization) follows the Summarize from Human Feedback paper while [$R_2$](https://huggingface.co/CogComp/bart-faithful-summary-detector) leverages contrast candidate generation.
Our results below reveal the following insights. The front defined by rewarded soups between the two weights specialized on $R_1$ (i.e., $\lambda=0.0$) and $R_2$ (i.e., $\lambda=1.0$) is above the straight line connecting those two points; this validates what we call in the paper *the linear mode connectivity hypothesis*. Moreover, the front intersects the point obtained by multi-objective RL (MORL) fine-tuning on $(1-\mu) \times R_1 + \mu \times R_2$ for $\mu=0.5$ (i.e., the average of the two rewards). Interestingly, when we compare both full fronts in the paper, they exhibit qualitatively the same shape. The qualitative visual inspections of the generations show that increasing $\lambda$ leads to shorter but more factual summaries; this is because $R_2$ evaluates faithfulness in priority.""",
unsafe_allow_html=True
)
st.markdown(
"""<h3 style='text-align: center;';>Click on a rewarded soup point on the left and select a subject on the right!</h3>""",
unsafe_allow_html=True
)
files = []
with open("streamlit_app/data/textgen/data.pkl", "rb") as f:
data = pickle.load(f)
with open("streamlit_app/data/textgen/data_prompt.pkl", "rb") as f:
data_prompt = pickle.load(f)
with open("streamlit_app/data/textgen/data_title.pkl", "rb") as f:
data_title = pickle.load(f)
left, right = st.columns((2, 2))
with left:
fig = plot_pareto(data)
onclick = plotly_events(fig, click_event=True)
with right:
option = st.selectbox('', data_title.keys())
subject = data_title[option]
st.markdown(
f"""
<div class="promptTextbox">
<div class="promptHeader">
Text to summarize:
</div>
<div class="promptContent">
{data_prompt[subject]['query']}
</div>
</div>
""",
unsafe_allow_html=True
)
st.markdown("<br>", unsafe_allow_html=True)
summary1 = data_prompt[subject]['outs'][0]["out"]
summary3 = data_prompt[subject]['outs'][-1]["out"]
nb_summaries = len(data_prompt[subject]['outs'])
if len(onclick) > 0:
idx = onclick[0]["pointIndex"]
else:
idx = 5
lambda2 = round(1 - idx / (len(data["wa_d"]) - 1), 2)
summary2 = data_prompt[subject]['outs'][idx]["out"]
bgcolor = interpolate_color(color2, color1, lambda2)
st.markdown(
f"""
<div class="promptTextbox">
<div class="promptHeader">
Generated summaries:
</div>
<div class="promptContent">
<div class="lambda-header" style='background-color: {color2};'>λ=0.0</div><div class="lambdas" style='background-color: {color2};'>{summary3}</div>
<div class="lambda-header" style='background-color: {bgcolor};'>λ={lambda2} </div><div class="lambdas" style='background-color: {bgcolor};'>{summary2}</div><br>
<div class="lambda-header" style='background-color: {color1};'>λ=1.0</div><div class="lambdas" style='background-color: {color1};'>{summary1}</div><br>
</div>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
img = Image.open("streamlit_app/assets/images/icon.png")
st.set_page_config(page_title="Rewarded soups", page_icon=img, layout="wide")
inject_custom_css("streamlit_app/assets/styles.css")
st.set_option('deprecation.showPyplotGlobalUse', False)
run()
|