Spaces:
Runtime error
Runtime error
import streamlit as st | |
from PIL import Image | |
import codecs | |
import streamlit.components.v1 as components | |
from utils import inject_custom_css | |
import streamlit as st | |
from streamlit_plotly_events import plotly_events | |
import pickle | |
import matplotlib.pyplot as plt | |
import plotly.graph_objects as go | |
import typing as tp | |
import colorsys | |
plt.style.use('default') | |
def interpolate_color(color1, color2, factor): | |
"""Interpolates between two RGB colors. Factor is between 0 and 1.""" | |
color1 = colorsys.rgb_to_hls(int(color1[1:3], 16)/255.0, int(color1[3:5], 16)/255.0, int(color1[5:], 16)/255.0) | |
color2 = colorsys.rgb_to_hls(int(color2[1:3], 16)/255.0, int(color2[3:5], 16)/255.0, int(color2[5:], 16)/255.0) | |
new_color = [color1[i] * (1 - factor) + color2[i] * factor for i in range(3)] | |
new_color = colorsys.hls_to_rgb(*new_color) | |
return '#{:02x}{:02x}{:02x}'.format(int(new_color[0]*255), int(new_color[1]*255), int(new_color[2]*255)) | |
color1 = "#fa7659" | |
color2 = "#6dafd7" | |
shapes=[ | |
dict( | |
type="rect", | |
xref="paper", | |
yref="paper", | |
x0=0, | |
y0=0, | |
x1=1, | |
y1=1, | |
line=dict( | |
color="Black", | |
width=2, | |
), | |
) | |
] | |
def plot_pareto(dict_results: tp.Dict): | |
reward1_key = "ava" | |
reward2_key = "cafe" | |
# Series for "wa" | |
lambda_values_wa = [round(1 - i/(len(dict_results["wa_d"])-1),2) for i in range(len(dict_results["wa_d"]))] | |
reward1_values_wa = [item[reward1_key] for item in dict_results["wa_d"]] | |
reward2_values_wa = [item[reward2_key] for item in dict_results["wa_d"]] | |
# Series for "morl" | |
mu_values_morl = [round(1 - i/(len(dict_results["morl_d"])-1),2) for i in range(len(dict_results["morl_d"]))] | |
reward1_values_morl = [item[reward1_key] for item in dict_results["morl_d"]][3] | |
reward2_values_morl = [item[reward2_key] for item in dict_results["morl_d"]][3] | |
# Series for "init" | |
reward1_values_init = [dict_results["init"][reward1_key]] | |
reward2_values_init = [dict_results["init"][reward2_key]] | |
layout = go.Layout(autosize=False,width=1000,height=1000) | |
fig = go.Figure(layout=layout) | |
for i in range(len(reward1_values_wa) - 1): | |
fig.add_trace(go.Scatter( | |
x=reward1_values_wa[i:i+2], | |
y=reward2_values_wa[i:i+2], | |
mode='lines', | |
hoverinfo='skip', | |
line=dict( | |
color=interpolate_color(color1, color2, i/(len(reward1_values_wa)-1)), | |
width=2 | |
), | |
showlegend=False | |
)) | |
# Plot for "wa" | |
fig.add_trace( | |
go.Scatter( | |
x=reward1_values_wa, | |
y=reward2_values_wa, | |
mode='markers', | |
name='Rewarded soups: 0鈮の烩墹1', | |
hoverinfo='text', | |
hovertext=[f'位={lmbda}' for lmbda in lambda_values_wa], | |
marker=dict( | |
color=[ | |
interpolate_color(color1, color2, i / len(lambda_values_wa)) | |
for i in range(len(lambda_values_wa)) | |
], | |
size=10 | |
) | |
) | |
) | |
# Plot for "morl" | |
fig.add_trace( | |
go.Scatter( | |
x=[reward1_values_morl], | |
y=[reward2_values_morl], | |
mode='markers', | |
name='MORL: 渭=0.5', | |
hoverinfo='skip', | |
marker=dict(color='#A45EE9', size=15, symbol="star") | |
) | |
) | |
# Plot for "init" | |
fig.add_trace( | |
go.Scatter( | |
x=reward1_values_init, | |
y=reward2_values_init, | |
mode='markers', | |
name='Pre-trained init', | |
hoverinfo='skip', | |
marker=dict(color='#9f9bc8', size=15, symbol="star"), | |
) | |
) | |
fig.update_layout( | |
xaxis=dict( | |
showticklabels=True, | |
ticks='outside', | |
tickfont=dict(size=18,), | |
title=dict(text="Ava reward", font=dict(size=18), standoff=10), | |
showgrid=False, | |
zeroline=False, | |
hoverformat='.2f' | |
), | |
yaxis=dict( | |
showticklabels=True, | |
ticks='outside', | |
tickfont=dict(size=18,), | |
title=dict(text="Cafe reward", font=dict(size=18), standoff=10), | |
showgrid=False, | |
zeroline=False, | |
hoverformat='.2f' | |
), | |
font=dict(family="Roboto", size=12, color="Black"), | |
hovermode='x unified', | |
autosize=False, | |
width=500, | |
height=500, | |
margin=dict(l=100, r=50, b=150, t=20, pad=0), | |
paper_bgcolor="White", | |
plot_bgcolor="White", | |
shapes=shapes, | |
legend=dict( | |
x=0.5, | |
y=0.03, | |
traceorder="normal", | |
font=dict(family="Roboto", size=12, color="black"), | |
bgcolor="White", | |
bordercolor="Black", | |
borderwidth=1 | |
) | |
) | |
return fig | |
def run(): | |
st.write( | |
f""" | |
<link href='http://fonts.googleapis.com/css?family=Roboto' rel='stylesheet' type='text/css'> | |
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script> | |
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML"> | |
</script> | |
<h3 style='text-align: left;';>RLHF of diffusion model for diverse human aesthetics</h3>""",unsafe_allow_html=True) | |
st.markdown( | |
r""" | |
Beyond text generation, we now apply RS to align text-to-image generation with human feedbacks. | |
Here, we demonstrate how rewarded soups allows to interpolate between models fine-tuned for different aesthetic metrics. | |
Our network is a diffusion model with 2.2B parameters, pre-trained on an internal dataset of 300M images; it reaches similar quality as Stable Diffusion, which was not used for copyright reasons. | |
To represent the subjectivity of human aesthetics, we employ $N=2$ open-source reward models: [*ava*](https://github.com/christophschuhmann/improved-aesthetic-predictor/), trained on the AVA dataset, and [*cafe*](https://huggingface.co/cafeai/cafe_aesthetic), trained on a mix of real-life and manga images. | |
We first generate 10000 images; then, for each reward, we remove half of the images with the lowest reward's score and fine-tune 10\% of the parameters on the reward-weighted negative log-likelihood. | |
Our results below show that interpolating between the expert models unveils a Pareto-optimal front, enabling alignment with a variety of aesthetic preferences. | |
Specifically, all interpolated models produce images of similar quality compared to fine-tuned models, demonstrating linear mode connectivity between the two fine-tuned models. | |
This ability to adapt at test time paves the way for a new form of user interaction with text-to-image models, beyond prompt engineering. | |
""", | |
unsafe_allow_html=True | |
) | |
st.markdown("""<h3 style='text-align: left;';>Click on a rewarded soup point on the left and select a prompt on the right!</h3>""",unsafe_allow_html=True) | |
files = [] | |
with open("streamlit_app/data/imgen/data.pkl","rb") as f: | |
data = pickle.load(f) | |
with open("streamlit_app/data/imgen/data_images.pkl","rb") as f: | |
data_images = pickle.load(f) | |
row_0_1,row_0_2 = st.columns([2,3]) | |
with row_0_1: | |
fig = plot_pareto(data) | |
onclick = plotly_events(fig, click_event=True) | |
with row_0_2: | |
option = st.selectbox('',data_images.keys()) | |
for i in range(11): | |
filename = f'https://github.com/continual-subspace/hidden_soup/blob/main/{data_images[option]["filename"]}_{i}.png?raw=true' | |
files.append(filename) | |
row_1_1,row_1_2,row_1_3 = st.columns([1,1,1]) | |
if len(onclick) > 0: | |
idx = onclick[-1]['pointIndex'] | |
else: | |
idx = 5 | |
img = files[idx] | |
bgcolor = interpolate_color(color2,color1,round(1 - idx/(len(files)-1),2)) | |
lambda2 = round(1 - idx/(len(files)-1),2) | |
img1 = files[0] | |
img0 = files[-1] | |
st.markdown( | |
f""" | |
<div class="promptTextbox"> | |
<div class="promptHeader"> | |
Generated images: | |
</div> | |
<div class="imgContent"> | |
<div class="imgContainer"> | |
<div class="imglambda-header" >位=0.0</div> | |
<div class="imglambdas" style='background-color: {color2};'><img src='{img0}' alt='{img0}'></div> | |
</div> | |
<div class="imgContainer"> | |
<div class="imglambda-header" >位={lambda2}</div> | |
<div class="imglambdas" style='background-color: {bgcolor};'><img src='{img}' alt='{img}'></div> | |
</div> | |
<div class="imgContainer"> | |
<div class="imglambda-header" >位=1.0</div> | |
<div class="imglambdas" style='background-color: {color1};'><img src='{img1}' alt='{img1}'></div> | |
</div> | |
</div> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
if __name__ == "__main__": | |
img = Image.open("streamlit_app/assets/images/icon.png") | |
st.set_page_config(page_title="Rewarded soups",page_icon=img,layout="wide") | |
inject_custom_css("streamlit_app/assets/styles.css") | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
run() | |