Spaces:
Sleeping
Sleeping
File size: 5,053 Bytes
c94dddb f6ea0cd 74f551d c94dddb c249ff0 c94dddb 3c7eec2 c94dddb 13ca701 9986638 40e4ca6 c94dddb fa77447 c94dddb 07ef311 c94dddb 07ef311 c94dddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Ref: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
import gradio as gr
import os
import spaces
import torch
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from peft import AutoPeftModelForCausalLM
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Sarashina-7B Instruct Test</h1>
<p>Sarashina-7B Instruct Testใ ใใ <a href="https://huggingface.co/alfredplpl/sarashina2-7b-it-test"><b>alfredplpl/sarashina2-7b-it-test</b></a>.</p>
</div>
'''
LICENSE = """
<p/>
---
Built with Meta Llama 3
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">้ๅ
ฌๅผ Sarashina2-7B Instruct Test</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ใชใใงใใใใฆใญ</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("alfredplpl/sarashina2-7b-it-test")
model = AutoPeftModelForCausalLM.from_pretrained("alfredplpl/sarashina2-7b-it-test", torch_dtype=torch.bfloat16)
tokenizer.chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}"
model=model.to("cuda:0")
@spaces.GPU()
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
conversation.append({"role": "system", "content": "ใใชใใฏๅช็งใชใขใทในใฟใณใใงใใ"})
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids.to(model.device),
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="โ๏ธ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['ๅฐๅญฆ็ใซใใใใใใใซ็ธๅฏพๆง็่ซใๆใใฆใใ ใใใ'],
['ๅฎๅฎใฎ่ตทๆบใ็ฅใใใใฎๆนๆณใในใใใใปใใคใปในใใใใงๆใใฆใใ ใใใ'],
['1ใใ100ใพใงใฎ็ด ๆฐใๆฑใใในใฏใชใใใPythonใงๆธใใฆใใ ใใใ'],
['ๅ้ใฎ้ฝ่ตใซใใใ่ช็ๆฅใใฌใผใณใใ่ใใฆใใ ใใใใใ ใใ้ฝ่ตใฏไธญๅญฆ็ใงใ็งใฏๅใใฏใฉในใฎ็ทๆงใงใใใใจใ่ๆ
ฎใใฆใใ ใใใ'],
['ใใณใฎใณใใธใฃใณใฐใซใฎ็ๆงใงใใใใจใๆญฃๅฝๅใใใใใซ่ชฌๆใใฆใใ ใใใ']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|