Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import shlex | |
import subprocess | |
import gradio as gr | |
import torch | |
if os.getenv('SYSTEM') == 'spaces': | |
subprocess.run(shlex.split('pip uninstall -y modelscope')) | |
subprocess.run( | |
shlex.split( | |
'pip install git+https://github.com/modelscope/modelscope.git@refs/pull/207/head' | |
)) | |
from modelscope.outputs import OutputKeys | |
from modelscope.pipelines import pipeline | |
DESCRIPTION = '# [ModelScope Text to Video Synthesis](https://modelscope.cn/models/damo/text-to-video-synthesis/summary)' | |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None: | |
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' | |
pipe = pipeline('text-to-video-synthesis', 'damo/text-to-video-synthesis') | |
def generate(prompt: str, seed: int) -> str: | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
torch.manual_seed(seed) | |
return pipe({'text': prompt})[OutputKeys.OUTPUT_VIDEO] | |
examples = [ | |
['An astronaut riding a horse.', 0], | |
['A panda eating bamboo on a rock.', 0], | |
['Spiderman is surfing.', 0], | |
] | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Text(label='Prompt', max_lines=1) | |
seed = gr.Slider( | |
label='Seed', | |
minimum=-1, | |
maximum=1000000, | |
step=1, | |
value=-1, | |
info='If set to -1, a different seed will be used each time.') | |
run_button = gr.Button('Run') | |
with gr.Column(): | |
result = gr.Video(label='Result') | |
inputs = [prompt, seed] | |
gr.Examples(examples=examples, | |
inputs=inputs, | |
outputs=result, | |
fn=generate, | |
cache_examples=os.getenv('SYSTEM') == 'spaces') | |
prompt.submit(fn=generate, inputs=inputs, outputs=result) | |
run_button.click(fn=generate, inputs=inputs, outputs=result) | |
demo.queue(api_open=False).launch() | |