ZebraLogic / data_utils.py
yuchenlin's picture
sub
0f9e3cb
raw
history blame
5.21 kB
from datasets import load_dataset, Dataset
import os
from datasets import load_dataset
from datasets.utils.logging import disable_progress_bar
from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES
from utils_display import make_clickable_model
import random
disable_progress_bar()
import math
import json
from tqdm import tqdm
import numpy as np
import os
from eval_utils import *
summary_file = "ZeroEval-main/result_dirs/zebra-grid.summary.json"
result_dir = "ZeroEval-main/result_dirs/zebra-grid/"
results_by_model = {}
# Formats the columns
def formatter(x):
if type(x) is str:
x = x
else:
x = round(x, 1)
return x
def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True):
for col in df.columns:
if col == "Model" and click_url:
df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
else:
df[col] = df[col].apply(formatter) # For numerical values
df.rename(columns=column_names, inplace=True)
list_columns = [col for col in ordered_columns if col in df.columns]
df = df[list_columns]
if rank_column in df.columns:
df.sort_values(by=rank_column, inplace=True, ascending=False)
return df
def load_all_data():
global summary_file, result_dir
with open(summary_file, "r") as f:
model_summary = json.load(f)
model_names = [model["Model"] for model in model_summary]
for model_name in model_names:
download_url = f"https://raw.githubusercontent.com/yuchenlin/ZeroEval/main/result_dirs/zebra-grid/{model_name}.json"
output_file = os.path.join(result_dir, f"{model_name}.json")
# mkdir -p result_dir if not exists
os.makedirs(result_dir, exist_ok=True)
if not os.path.exists(output_file):
os.system(f"wget {download_url} -O {output_file}")
print(f"Downloaded {model_name}.json")
with open(output_file, "r") as f:
print(f"Loading {output_file}")
results_by_model[model_name] = json.load(f)
def get_random_item(model_name="random", size_H="random", size_W="random"):
global summary_file, result_dir, results_by_model
if results_by_model is None or len(results_by_model) == 0:
load_all_data()
if model_name == "random":
model_name = random.choice(list(results_by_model.keys()))
data = results_by_model[model_name]
random.shuffle(data)
selected_item = None
prediction_table = None
prediction_reasoning = None
id_to_item = {}
for item in data:
id_to_item[item["id"]] = item
if size_H == "random":
size_H_choice = random.choice(list(range(2, 7)))
else:
size_H_choice = size_H
if size_W == "random":
size_W_choice = random.choice(list(range(2, 7)))
else:
size_W_choice = size_W
ok_ids = [id for id in id_to_item if id_to_item[id]["size"].startswith(f"{size_H_choice}*{size_W_choice}")]
for ok_id in ok_ids:
item = id_to_item[ok_id]
prediction_str = item["output"][0]
prediction_json = extract_last_complete_json(prediction_str)
if prediction_json is None or "solution" not in prediction_json:
continue
if "child" in item["puzzle"].lower() or "mother" in item["puzzle"].lower():
continue
if "loves the spaghetti eater" in item["puzzle"].lower():
continue
prediction_reasoning = prediction_json.get("reasoning", "")
prediction_table = prediction_json["solution"]
if prediction_table is not None and "House 1" in prediction_table:
selected_item = item
break
if selected_item is None:
# selected_item = random.choice(data)
print("No item found!")
return None
explore_item = {}
explore_item["id"] = selected_item["id"]
explore_item["Model"] = model_name
explore_item["size"] = selected_item["size"]
explore_item["puzzle"] = selected_item["puzzle"]
explore_item["solution"] = prediction_table
explore_item["reasoning"] = prediction_reasoning
headers = ["Houses"] + list(prediction_table["House 1"].keys())
rows = []
for row_id in range(len(prediction_table)):
row = [row_id+1]
for feature in headers[1:]:
row.append(prediction_table[f"House {row_id+1}"][feature])
rows.append(row)
table_md = tabulate(rows, headers=headers, tablefmt="github")
explore_item["solution_table_md"] = table_md
this_total_cells, this_correct_cells, truth_solution_table = eval_each_puzzle(explore_item["id"], prediction_table)
# print(table_md)
explore_item["correct_cells"] = this_correct_cells
explore_item["total_cells"] = this_total_cells
explore_item["truth_solution_table"] = tabulate(truth_solution_table["rows"], headers=truth_solution_table["header"], tablefmt="github")
return explore_item
if __name__ == "__main__":
load_all_data()
print("All data downloaded!")
print(json.dumps(get_random_item(model_name="gemini-1.5-pro", size_H="2", size_W="5"), indent=2))