Spaces:
Running
Running
from datasets import load_dataset, Dataset | |
import os | |
from datasets import load_dataset | |
from datasets.utils.logging import disable_progress_bar | |
from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES | |
from utils_display import make_clickable_model | |
import random | |
disable_progress_bar() | |
import math | |
import json | |
from tqdm import tqdm | |
import numpy as np | |
import os | |
from eval_utils import * | |
summary_file = "ZeroEval-main/result_dirs/zebra-grid.summary.json" | |
result_dir = "ZeroEval-main/result_dirs/zebra-grid/" | |
results_by_model = {} | |
# Formats the columns | |
def formatter(x): | |
if type(x) is str: | |
x = x | |
else: | |
x = round(x, 1) | |
return x | |
def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True): | |
for col in df.columns: | |
if col == "Model" and click_url: | |
df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) | |
else: | |
df[col] = df[col].apply(formatter) # For numerical values | |
df.rename(columns=column_names, inplace=True) | |
list_columns = [col for col in ordered_columns if col in df.columns] | |
df = df[list_columns] | |
if rank_column in df.columns: | |
df.sort_values(by=rank_column, inplace=True, ascending=False) | |
return df | |
def load_all_data(): | |
global summary_file, result_dir | |
with open(summary_file, "r") as f: | |
model_summary = json.load(f) | |
model_names = [model["Model"] for model in model_summary] | |
for model_name in model_names: | |
download_url = f"https://raw.githubusercontent.com/yuchenlin/ZeroEval/main/result_dirs/zebra-grid/{model_name}.json" | |
output_file = os.path.join(result_dir, f"{model_name}.json") | |
# mkdir -p result_dir if not exists | |
os.makedirs(result_dir, exist_ok=True) | |
if not os.path.exists(output_file): | |
os.system(f"wget {download_url} -O {output_file}") | |
print(f"Downloaded {model_name}.json") | |
with open(output_file, "r") as f: | |
print(f"Loading {output_file}") | |
results_by_model[model_name] = json.load(f) | |
def get_random_item(model_name="random", size_H="random", size_W="random"): | |
global summary_file, result_dir, results_by_model | |
if results_by_model is None or len(results_by_model) == 0: | |
load_all_data() | |
if model_name == "random": | |
model_name = random.choice(list(results_by_model.keys())) | |
data = results_by_model[model_name] | |
random.shuffle(data) | |
selected_item = None | |
prediction_table = None | |
prediction_reasoning = None | |
id_to_item = {} | |
for item in data: | |
id_to_item[item["id"]] = item | |
if size_H == "random": | |
size_H_choice = random.choice(list(range(2, 7))) | |
else: | |
size_H_choice = size_H | |
if size_W == "random": | |
size_W_choice = random.choice(list(range(2, 7))) | |
else: | |
size_W_choice = size_W | |
ok_ids = [id for id in id_to_item if id_to_item[id]["size"].startswith(f"{size_H_choice}*{size_W_choice}")] | |
for ok_id in ok_ids: | |
item = id_to_item[ok_id] | |
prediction_str = item["output"][0] | |
prediction_json = extract_last_complete_json(prediction_str) | |
if prediction_json is None or "solution" not in prediction_json: | |
continue | |
if "child" in item["puzzle"].lower() or "mother" in item["puzzle"].lower(): | |
continue | |
if "loves the spaghetti eater" in item["puzzle"].lower(): | |
continue | |
prediction_reasoning = prediction_json.get("reasoning", "") | |
prediction_table = prediction_json["solution"] | |
if prediction_table is not None and "House 1" in prediction_table: | |
selected_item = item | |
break | |
if selected_item is None: | |
# selected_item = random.choice(data) | |
print("No item found!") | |
return None | |
explore_item = {} | |
explore_item["id"] = selected_item["id"] | |
explore_item["Model"] = model_name | |
explore_item["size"] = selected_item["size"] | |
explore_item["puzzle"] = selected_item["puzzle"] | |
explore_item["solution"] = prediction_table | |
explore_item["reasoning"] = prediction_reasoning | |
headers = ["Houses"] + list(prediction_table["House 1"].keys()) | |
rows = [] | |
for row_id in range(len(prediction_table)): | |
row = [row_id+1] | |
for feature in headers[1:]: | |
row.append(prediction_table[f"House {row_id+1}"][feature]) | |
rows.append(row) | |
table_md = tabulate(rows, headers=headers, tablefmt="github") | |
explore_item["solution_table_md"] = table_md | |
this_total_cells, this_correct_cells, truth_solution_table = eval_each_puzzle(explore_item["id"], prediction_table) | |
# print(table_md) | |
explore_item["correct_cells"] = this_correct_cells | |
explore_item["total_cells"] = this_total_cells | |
explore_item["truth_solution_table"] = tabulate(truth_solution_table["rows"], headers=truth_solution_table["header"], tablefmt="github") | |
return explore_item | |
if __name__ == "__main__": | |
load_all_data() | |
print("All data downloaded!") | |
print(json.dumps(get_random_item(model_name="gemini-1.5-pro", size_H="2", size_W="5"), indent=2)) |