File size: 10,577 Bytes
acb64d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gc
import re
import time

import numpy as np
import torch
import transformers

import modules.shared as shared
from modules.callbacks import (Iteratorize, Stream,
                               _SentinelTokenStoppingCriteria)
from modules.extensions import apply_extensions
from modules.html_generator import generate_4chan_html, generate_basic_html
from modules.models import local_rank


def get_max_prompt_length(tokens):
    max_length = 2048-tokens
    if shared.soft_prompt:
        max_length -= shared.soft_prompt_tensor.shape[1]
    return max_length

def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
    if shared.is_RWKV:
        input_ids = shared.tokenizer.encode(str(prompt))
        input_ids = np.array(input_ids).reshape(1, len(input_ids))
        return input_ids
    else:
        input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
        if shared.args.cpu:
            return input_ids
        elif shared.args.flexgen:
            return input_ids.numpy()
        elif shared.args.deepspeed:
            return input_ids.to(device=local_rank)
        else:
            return input_ids.cuda()

def decode(output_ids):
    # Open Assistant relies on special tokens like <|endoftext|>
    if re.match('oasst-*', shared.model_name.lower()):
        return shared.tokenizer.decode(output_ids, skip_special_tokens=False)
    else:
        reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
        reply = reply.replace(r'<|endoftext|>', '')
        return reply

def generate_softprompt_input_tensors(input_ids):
    inputs_embeds = shared.model.transformer.wte(input_ids)
    inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
    filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
    #filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
    return inputs_embeds, filler_input_ids

# Removes empty replies from gpt4chan outputs
def fix_gpt4chan(s):
    for i in range(10):
        s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
        s = re.sub("--- [0-9]*\n *\n---", "---", s)
        s = re.sub("--- [0-9]*\n\n\n---", "---", s)
    return s

# Fix the LaTeX equations in galactica
def fix_galactica(s):
    s = s.replace(r'\[', r'$')
    s = s.replace(r'\]', r'$')
    s = s.replace(r'\(', r'$')
    s = s.replace(r'\)', r'$')
    s = s.replace(r'$$', r'$')
    s = re.sub(r'\n', r'\n\n', s)
    s = re.sub(r"\n{3,}", "\n\n", s)
    return s

def formatted_outputs(reply, model_name):
    if not (shared.args.chat or shared.args.cai_chat):
        if model_name.lower().startswith('galactica'):
            reply = fix_galactica(reply)
            return reply, reply, generate_basic_html(reply)
        elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
            reply = fix_gpt4chan(reply)
            return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
        else:
            return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
    else:
        return reply

def clear_torch_cache():
    gc.collect()
    if not shared.args.cpu:
        torch.cuda.empty_cache()

def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
    clear_torch_cache()
    t0 = time.time()

    # These models are not part of Hugging Face, so we handle them
    # separately and terminate the function call earlier
    if shared.is_RWKV:
        try:
            if shared.args.no_stream:
                reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
                yield formatted_outputs(reply, shared.model_name)
            else:
                yield formatted_outputs(question, shared.model_name)
                # RWKV has proper streaming, which is very nice.
                # No need to generate 8 tokens at a time.
                for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
                    yield formatted_outputs(reply, shared.model_name)
        finally:
            t1 = time.time()
            output = encode(reply)[0]
            input_ids = encode(question)
            print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
            return

    original_question = question
    if not (shared.args.chat or shared.args.cai_chat):
        question = apply_extensions(question, "input")
    if shared.args.verbose:
        print(f"\n\n{question}\n--------------------\n")

    input_ids = encode(question, max_new_tokens)
    original_input_ids = input_ids
    output = input_ids[0]
    cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
    eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
    if eos_token is not None:
        eos_token_ids.append(int(encode(eos_token)[0][-1]))
    stopping_criteria_list = transformers.StoppingCriteriaList()
    if stopping_string is not None:
        # Copied from https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
        t = encode(stopping_string, 0, add_special_tokens=False)
        stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))

    if not shared.args.flexgen:
        generate_params = [
            f"max_new_tokens=max_new_tokens",
            f"eos_token_id={eos_token_ids}",
            f"stopping_criteria=stopping_criteria_list",
            f"do_sample={do_sample}",
            f"temperature={temperature}",
            f"top_p={top_p}",
            f"typical_p={typical_p}",
            f"repetition_penalty={repetition_penalty}",
            f"top_k={top_k}",
            f"min_length={min_length if shared.args.no_stream else 0}",
            f"no_repeat_ngram_size={no_repeat_ngram_size}",
            f"num_beams={num_beams}",
            f"penalty_alpha={penalty_alpha}",
            f"length_penalty={length_penalty}",
            f"early_stopping={early_stopping}",
        ]
    else:
        generate_params = [
            f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}",
            f"do_sample={do_sample}",
            f"temperature={temperature}",
            f"stop={eos_token_ids[-1]}",
        ]
    if shared.args.deepspeed:
        generate_params.append("synced_gpus=True")
    if shared.soft_prompt:
        inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
        generate_params.insert(0, "inputs_embeds=inputs_embeds")
        generate_params.insert(0, "inputs=filler_input_ids")
    else:
        generate_params.insert(0, "inputs=input_ids")

    try:
        # Generate the entire reply at once.
        if shared.args.no_stream:
            with torch.no_grad():
                output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
            if shared.soft_prompt:
                output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))

            reply = decode(output)
            if not (shared.args.chat or shared.args.cai_chat):
                reply = original_question + apply_extensions(reply[len(question):], "output")

            yield formatted_outputs(reply, shared.model_name)

        # Stream the reply 1 token at a time.
        # This is based on the trick of using 'stopping_criteria' to create an iterator.
        elif not shared.args.flexgen:

            def generate_with_callback(callback=None, **kwargs):
                kwargs['stopping_criteria'].append(Stream(callback_func=callback))
                clear_torch_cache()
                with torch.no_grad():
                    shared.model.generate(**kwargs)

            def generate_with_streaming(**kwargs):
                return Iteratorize(generate_with_callback, kwargs, callback=None)

            yield formatted_outputs(original_question, shared.model_name)
            with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator:
                for output in generator:
                    if shared.soft_prompt:
                        output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
                    reply = decode(output)

                    if not (shared.args.chat or shared.args.cai_chat):
                        reply = original_question + apply_extensions(reply[len(question):], "output")

                    if output[-1] in eos_token_ids:
                        break
                    yield formatted_outputs(reply, shared.model_name)

                yield formatted_outputs(reply, shared.model_name)

        # Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
        else:
            for i in range(max_new_tokens//8+1):
                clear_torch_cache()
                with torch.no_grad():
                    output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
                if shared.soft_prompt:
                    output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
                reply = decode(output)

                if not (shared.args.chat or shared.args.cai_chat):
                    reply = original_question + apply_extensions(reply[len(question):], "output")

                if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)):
                    break
                yield formatted_outputs(reply, shared.model_name)

                input_ids = np.reshape(output, (1, output.shape[0]))
                if shared.soft_prompt:
                    inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)

            yield formatted_outputs(reply, shared.model_name)

    finally:
        t1 = time.time()
        print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)")
        return