Spaces:
Running
on
Zero
Running
on
Zero
Update `app.py`
Browse files
app.py
CHANGED
@@ -1,51 +1,63 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
import torch
|
|
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
torch_dtype = torch.float32
|
15 |
|
16 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
-
pipe = pipe.to(device)
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
-
#@spaces.GPU #[uncomment to use ZeroGPU]
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
|
28 |
generator = torch.Generator().manual_seed(seed)
|
29 |
-
|
30 |
-
image =
|
31 |
-
prompt
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
).images[0]
|
39 |
-
|
40 |
return image, seed
|
41 |
|
|
|
42 |
examples = [
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
]
|
47 |
|
48 |
-
css="""
|
49 |
#col-container {
|
50 |
margin: 0 auto;
|
51 |
max-width: 640px;
|
@@ -53,14 +65,10 @@ css="""
|
|
53 |
"""
|
54 |
|
55 |
with gr.Blocks(css=css) as demo:
|
56 |
-
|
57 |
with gr.Column(elem_id="col-container"):
|
58 |
-
gr.Markdown(
|
59 |
-
|
60 |
-
""")
|
61 |
-
|
62 |
with gr.Row():
|
63 |
-
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
66 |
show_label=False,
|
@@ -68,75 +76,79 @@ with gr.Blocks(css=css) as demo:
|
|
68 |
placeholder="Enter your prompt",
|
69 |
container=False,
|
70 |
)
|
71 |
-
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
negative_prompt = gr.Text(
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
seed = gr.Slider(
|
86 |
label="Seed",
|
87 |
minimum=0,
|
88 |
maximum=MAX_SEED,
|
89 |
step=1,
|
90 |
-
value=
|
91 |
)
|
92 |
-
|
93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
with gr.Row():
|
96 |
-
|
97 |
width = gr.Slider(
|
98 |
label="Width",
|
99 |
minimum=256,
|
100 |
maximum=MAX_IMAGE_SIZE,
|
101 |
step=32,
|
102 |
-
value=1024,
|
103 |
)
|
104 |
-
|
105 |
height = gr.Slider(
|
106 |
label="Height",
|
107 |
minimum=256,
|
108 |
maximum=MAX_IMAGE_SIZE,
|
109 |
step=32,
|
110 |
-
value=
|
111 |
)
|
112 |
-
|
113 |
with gr.Row():
|
114 |
-
|
115 |
guidance_scale = gr.Slider(
|
116 |
label="Guidance scale",
|
117 |
minimum=0.0,
|
118 |
maximum=10.0,
|
119 |
step=0.1,
|
120 |
-
value=
|
121 |
)
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
num_inference_steps = gr.Slider(
|
124 |
label="Number of inference steps",
|
125 |
minimum=1,
|
126 |
maximum=50,
|
127 |
step=1,
|
128 |
-
value=
|
129 |
)
|
130 |
-
|
131 |
-
gr.Examples(
|
132 |
-
|
133 |
-
inputs = [prompt]
|
134 |
-
)
|
135 |
gr.on(
|
136 |
triggers=[run_button.click, prompt.submit],
|
137 |
-
fn
|
138 |
-
inputs
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
|
142 |
-
demo.queue().launch()
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
import spaces
|
|
|
|
|
6 |
import torch
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
repo_id = "black-forest-labs/FLUX.1-dev"
|
11 |
+
adapter_id = "alvarobartt/ghibli-characters-flux-lora"
|
12 |
|
13 |
+
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
14 |
+
pipeline.load_lora_weights(adapter_id)
|
15 |
+
pipeline = pipeline.to(device)
|
|
|
16 |
|
|
|
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
|
|
|
|
21 |
|
22 |
+
@spaces.GPU(duration=120)
|
23 |
+
def inference(
|
24 |
+
prompt: str,
|
25 |
+
seed: int,
|
26 |
+
randomize_seed: bool,
|
27 |
+
width: int,
|
28 |
+
height: int,
|
29 |
+
guidance_scale: float,
|
30 |
+
num_inference_steps: int,
|
31 |
+
lora_scale: float,
|
32 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
33 |
+
):
|
34 |
if randomize_seed:
|
35 |
seed = random.randint(0, MAX_SEED)
|
36 |
+
|
37 |
generator = torch.Generator().manual_seed(seed)
|
38 |
+
|
39 |
+
image = pipeline(
|
40 |
+
prompt=prompt,
|
41 |
+
guidance_scale=guidance_scale,
|
42 |
+
num_inference_steps=num_inference_steps,
|
43 |
+
width=width,
|
44 |
+
height=height,
|
45 |
+
generator=generator,
|
46 |
+
lora_scale=lora_scale,
|
47 |
+
).images[0]
|
48 |
+
|
49 |
return image, seed
|
50 |
|
51 |
+
|
52 |
examples = [
|
53 |
+
(
|
54 |
+
"Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
|
55 |
+
" standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
|
56 |
+
" sunlight illuminating the scene, a gentle breeze rustling the leaves"
|
57 |
+
)
|
58 |
]
|
59 |
|
60 |
+
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
max-width: 640px;
|
|
|
65 |
"""
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
|
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
+
gr.Markdown("# FLUX.1 Ghibli Studio LoRA")
|
70 |
+
|
|
|
|
|
71 |
with gr.Row():
|
|
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
74 |
show_label=False,
|
|
|
76 |
placeholder="Enter your prompt",
|
77 |
container=False,
|
78 |
)
|
79 |
+
|
80 |
run_button = gr.Button("Run", scale=0)
|
81 |
+
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
seed = gr.Slider(
|
86 |
label="Seed",
|
87 |
minimum=0,
|
88 |
maximum=MAX_SEED,
|
89 |
step=1,
|
90 |
+
value=42,
|
91 |
)
|
92 |
+
|
93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
+
|
95 |
with gr.Row():
|
|
|
96 |
width = gr.Slider(
|
97 |
label="Width",
|
98 |
minimum=256,
|
99 |
maximum=MAX_IMAGE_SIZE,
|
100 |
step=32,
|
101 |
+
value=1024,
|
102 |
)
|
103 |
+
|
104 |
height = gr.Slider(
|
105 |
label="Height",
|
106 |
minimum=256,
|
107 |
maximum=MAX_IMAGE_SIZE,
|
108 |
step=32,
|
109 |
+
value=768,
|
110 |
)
|
111 |
+
|
112 |
with gr.Row():
|
|
|
113 |
guidance_scale = gr.Slider(
|
114 |
label="Guidance scale",
|
115 |
minimum=0.0,
|
116 |
maximum=10.0,
|
117 |
step=0.1,
|
118 |
+
value=3.5,
|
119 |
)
|
120 |
+
|
121 |
+
lora_scale = gr.Slider(
|
122 |
+
label="LoRA scale",
|
123 |
+
minimum=0.0,
|
124 |
+
maximum=1.0,
|
125 |
+
step=0.1,
|
126 |
+
value=1.0,
|
127 |
+
)
|
128 |
+
|
129 |
num_inference_steps = gr.Slider(
|
130 |
label="Number of inference steps",
|
131 |
minimum=1,
|
132 |
maximum=50,
|
133 |
step=1,
|
134 |
+
value=30,
|
135 |
)
|
136 |
+
|
137 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
138 |
+
|
|
|
|
|
139 |
gr.on(
|
140 |
triggers=[run_button.click, prompt.submit],
|
141 |
+
fn=inference,
|
142 |
+
inputs=[
|
143 |
+
prompt,
|
144 |
+
seed,
|
145 |
+
randomize_seed,
|
146 |
+
width,
|
147 |
+
height,
|
148 |
+
guidance_scale,
|
149 |
+
num_inference_steps,
|
150 |
+
],
|
151 |
+
outputs=[result, seed],
|
152 |
)
|
153 |
|
154 |
+
demo.queue().launch()
|