alvarobartt HF staff commited on
Commit
bce439c
·
unverified ·
1 Parent(s): 4feae5e

Update `app.py`

Browse files
Files changed (1) hide show
  1. app.py +77 -65
app.py CHANGED
@@ -1,51 +1,63 @@
 
 
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
- from diffusers import DiffusionPipeline
6
  import torch
 
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
 
10
 
11
- if torch.cuda.is_available():
12
- torch_dtype = torch.float16
13
- else:
14
- torch_dtype = torch.float32
15
 
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 1024
21
 
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
-
28
  generator = torch.Generator().manual_seed(seed)
29
-
30
- image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
39
-
40
  return image, seed
41
 
 
42
  examples = [
43
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
- "An astronaut riding a green horse",
45
- "A delicious ceviche cheesecake slice",
 
 
46
  ]
47
 
48
- css="""
49
  #col-container {
50
  margin: 0 auto;
51
  max-width: 640px;
@@ -53,14 +65,10 @@ css="""
53
  """
54
 
55
  with gr.Blocks(css=css) as demo:
56
-
57
  with gr.Column(elem_id="col-container"):
58
- gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
60
- """)
61
-
62
  with gr.Row():
63
-
64
  prompt = gr.Text(
65
  label="Prompt",
66
  show_label=False,
@@ -68,75 +76,79 @@ with gr.Blocks(css=css) as demo:
68
  placeholder="Enter your prompt",
69
  container=False,
70
  )
71
-
72
  run_button = gr.Button("Run", scale=0)
73
-
74
  result = gr.Image(label="Result", show_label=False)
75
 
76
  with gr.Accordion("Advanced Settings", open=False):
77
-
78
- negative_prompt = gr.Text(
79
- label="Negative prompt",
80
- max_lines=1,
81
- placeholder="Enter a negative prompt",
82
- visible=False,
83
- )
84
-
85
  seed = gr.Slider(
86
  label="Seed",
87
  minimum=0,
88
  maximum=MAX_SEED,
89
  step=1,
90
- value=0,
91
  )
92
-
93
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
  with gr.Row():
96
-
97
  width = gr.Slider(
98
  label="Width",
99
  minimum=256,
100
  maximum=MAX_IMAGE_SIZE,
101
  step=32,
102
- value=1024, #Replace with defaults that work for your model
103
  )
104
-
105
  height = gr.Slider(
106
  label="Height",
107
  minimum=256,
108
  maximum=MAX_IMAGE_SIZE,
109
  step=32,
110
- value=1024, #Replace with defaults that work for your model
111
  )
112
-
113
  with gr.Row():
114
-
115
  guidance_scale = gr.Slider(
116
  label="Guidance scale",
117
  minimum=0.0,
118
  maximum=10.0,
119
  step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
  )
122
-
 
 
 
 
 
 
 
 
123
  num_inference_steps = gr.Slider(
124
  label="Number of inference steps",
125
  minimum=1,
126
  maximum=50,
127
  step=1,
128
- value=2, #Replace with defaults that work for your model
129
  )
130
-
131
- gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
- )
135
  gr.on(
136
  triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
 
 
 
 
 
 
 
 
140
  )
141
 
142
- demo.queue().launch()
 
1
+ import random
2
+
3
  import gradio as gr
4
  import numpy as np
5
+ import spaces
 
 
6
  import torch
7
+ from diffusers import DiffusionPipeline
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ repo_id = "black-forest-labs/FLUX.1-dev"
11
+ adapter_id = "alvarobartt/ghibli-characters-flux-lora"
12
 
13
+ pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
14
+ pipeline.load_lora_weights(adapter_id)
15
+ pipeline = pipeline.to(device)
 
16
 
 
 
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
 
 
21
 
22
+ @spaces.GPU(duration=120)
23
+ def inference(
24
+ prompt: str,
25
+ seed: int,
26
+ randomize_seed: bool,
27
+ width: int,
28
+ height: int,
29
+ guidance_scale: float,
30
+ num_inference_steps: int,
31
+ lora_scale: float,
32
+ progress: gr.Progress = gr.Progress(track_tqdm=True),
33
+ ):
34
  if randomize_seed:
35
  seed = random.randint(0, MAX_SEED)
36
+
37
  generator = torch.Generator().manual_seed(seed)
38
+
39
+ image = pipeline(
40
+ prompt=prompt,
41
+ guidance_scale=guidance_scale,
42
+ num_inference_steps=num_inference_steps,
43
+ width=width,
44
+ height=height,
45
+ generator=generator,
46
+ lora_scale=lora_scale,
47
+ ).images[0]
48
+
49
  return image, seed
50
 
51
+
52
  examples = [
53
+ (
54
+ "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
55
+ " standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
56
+ " sunlight illuminating the scene, a gentle breeze rustling the leaves"
57
+ )
58
  ]
59
 
60
+ css = """
61
  #col-container {
62
  margin: 0 auto;
63
  max-width: 640px;
 
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
+ gr.Markdown("# FLUX.1 Ghibli Studio LoRA")
70
+
 
 
71
  with gr.Row():
 
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
 
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
+
80
  run_button = gr.Button("Run", scale=0)
81
+
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
 
85
  seed = gr.Slider(
86
  label="Seed",
87
  minimum=0,
88
  maximum=MAX_SEED,
89
  step=1,
90
+ value=42,
91
  )
92
+
93
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
+
95
  with gr.Row():
 
96
  width = gr.Slider(
97
  label="Width",
98
  minimum=256,
99
  maximum=MAX_IMAGE_SIZE,
100
  step=32,
101
+ value=1024,
102
  )
103
+
104
  height = gr.Slider(
105
  label="Height",
106
  minimum=256,
107
  maximum=MAX_IMAGE_SIZE,
108
  step=32,
109
+ value=768,
110
  )
111
+
112
  with gr.Row():
 
113
  guidance_scale = gr.Slider(
114
  label="Guidance scale",
115
  minimum=0.0,
116
  maximum=10.0,
117
  step=0.1,
118
+ value=3.5,
119
  )
120
+
121
+ lora_scale = gr.Slider(
122
+ label="LoRA scale",
123
+ minimum=0.0,
124
+ maximum=1.0,
125
+ step=0.1,
126
+ value=1.0,
127
+ )
128
+
129
  num_inference_steps = gr.Slider(
130
  label="Number of inference steps",
131
  minimum=1,
132
  maximum=50,
133
  step=1,
134
+ value=30,
135
  )
136
+
137
+ gr.Examples(examples=examples, inputs=[prompt])
138
+
 
 
139
  gr.on(
140
  triggers=[run_button.click, prompt.submit],
141
+ fn=inference,
142
+ inputs=[
143
+ prompt,
144
+ seed,
145
+ randomize_seed,
146
+ width,
147
+ height,
148
+ guidance_scale,
149
+ num_inference_steps,
150
+ ],
151
+ outputs=[result, seed],
152
  )
153
 
154
+ demo.queue().launch()