File size: 9,958 Bytes
4e46a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import torch.nn as nn
from torch.nn.modules.normalization import LayerNorm
import random
import numpy as np
from utilities.constants import *
from utilities.device import get_device
from .positional_encoding import PositionalEncoding
from .rpr import TransformerDecoderRPR, TransformerDecoderLayerRPR
from datetime import datetime
import json


class VideoMusicTransformer(nn.Module):
    def __init__(self, n_layers=6, num_heads=8, d_model=512, dim_feedforward=1024,
                 dropout=0.1, max_sequence_midi =2048, max_sequence_video=300, max_sequence_chord=300, total_vf_dim = 0, rpr=False):
        super(VideoMusicTransformer, self).__init__()
        self.nlayers    = n_layers
        self.nhead      = num_heads
        self.d_model    = d_model
        self.d_ff       = dim_feedforward
        self.dropout    = dropout
        self.max_seq_midi    = max_sequence_midi
        self.max_seq_video    = max_sequence_video
        self.max_seq_chord    = max_sequence_chord
        self.rpr        = rpr

        # Input embedding for video and music features
        self.embedding = nn.Embedding(CHORD_SIZE, self.d_model)
        self.embedding_root = nn.Embedding(CHORD_ROOT_SIZE, self.d_model)
        self.embedding_attr = nn.Embedding(CHORD_ATTR_SIZE, self.d_model)
        
        self.total_vf_dim = total_vf_dim
        self.Linear_vis     = nn.Linear(self.total_vf_dim, self.d_model)
        self.Linear_chord     = nn.Linear(self.d_model+1, self.d_model)
        
        # Positional encoding
        self.positional_encoding = PositionalEncoding(self.d_model, self.dropout, self.max_seq_chord)
        self.positional_encoding_video = PositionalEncoding(self.d_model, self.dropout, self.max_seq_video)

        # Add condition (minor or major)
        self.condition_linear = nn.Linear(1, self.d_model)
        
        # Base transformer
        if(not self.rpr):
            self.transformer = nn.Transformer(
                d_model=self.d_model, nhead=self.nhead, num_encoder_layers=self.nlayers,
                num_decoder_layers=self.nlayers, dropout=self.dropout, # activation=self.ff_activ,
                dim_feedforward=self.d_ff
            )
        # RPR Transformer
        else:
            decoder_norm = LayerNorm(self.d_model)
            decoder_layer = TransformerDecoderLayerRPR(self.d_model, self.nhead, self.d_ff, self.dropout, er_len=self.max_seq_chord)
            decoder = TransformerDecoderRPR(decoder_layer, self.nlayers, decoder_norm)
            self.transformer = nn.Transformer(
                d_model=self.d_model, nhead=self.nhead, num_encoder_layers=self.nlayers,
                num_decoder_layers=self.nlayers, dropout=self.dropout, # activation=self.ff_activ,
                dim_feedforward=self.d_ff, custom_decoder=decoder
            )        
        
        self.Wout       = nn.Linear(self.d_model, CHORD_SIZE)
        self.Wout_root       = nn.Linear(self.d_model, CHORD_ROOT_SIZE)
        self.Wout_attr       = nn.Linear(self.d_model, CHORD_ATTR_SIZE)
        self.softmax    = nn.Softmax(dim=-1)
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    def forward(self, x, x_root, x_attr, feature_semantic_list, feature_key, feature_scene_offset, feature_motion, feature_emotion, mask=True):
        if(mask is True):
            mask = self.transformer.generate_square_subsequent_mask(x.shape[1]).to(self.device)
        else:
            mask = None
        
        x_root = self.embedding_root(x_root)
        x_attr = self.embedding_attr(x_attr)
        x = x_root + x_attr

        feature_key_padded = torch.full((x.shape[0], x.shape[1], 1), feature_key.item())
        feature_key_padded = feature_key_padded.to(self.device)
        x = torch.cat([x, feature_key_padded], dim=-1)

        xf = self.Linear_chord(x)

        ### Video (SemanticList + SceneOffset + Motion + Emotion) (ENCODER) ###
        vf_concat = feature_semantic_list[0].float()

        for i in range(1, len(feature_semantic_list)):
            vf_concat = torch.cat( (vf_concat, feature_semantic_list[i].float()), dim=2)            
        
        vf_concat = torch.cat([vf_concat, feature_scene_offset.unsqueeze(-1).float()], dim=-1) # -> (max_seq_video, batch_size, d_model+1)
        vf_concat = torch.cat([vf_concat, feature_motion.unsqueeze(-1).float()], dim=-1) # -> (max_seq_video, batch_size, d_model+1)
        vf_concat = torch.cat([vf_concat, feature_emotion.float()], dim=-1) # -> (max_seq_video, batch_size, d_model+1)
        vf = self.Linear_vis(vf_concat)
        
        ### POSITIONAL ENCODING ###
        
        xf = xf.permute(1,0,2) # -> (max_seq-1, batch_size, d_model)
        vf = vf.permute(1,0,2) # -> (max_seq_video, batch_size, d_model)
        
        xf = self.positional_encoding(xf)
        vf = self.positional_encoding_video(vf)

        ### TRANSFORMER ###
        x_out = self.transformer(src=vf, tgt=xf, tgt_mask=mask)
        x_out = x_out.permute(1,0,2)

        if IS_SEPERATED:
            y_root = self.Wout_root(x_out)
            y_attr = self.Wout_attr(x_out)
            del mask
            return y_root, y_attr
        else:
            y = self.Wout(x_out)
            del mask
            return y
    
    def generate(self, feature_semantic_list = [], feature_key=None, feature_scene_offset=None, feature_motion=None, feature_emotion=None,
                 primer=None, primer_root=None, primer_attr=None, target_seq_length=300, beam=0, 
                 beam_chance=1.0, max_conseq_N = 0, max_conseq_chord = 2):
        
        assert (not self.training), "Cannot generate while in training mode"
        print("Generating sequence of max length:", target_seq_length)

        with open('dataset/vevo_meta/chord_inv.json') as json_file:
            chordInvDic = json.load(json_file)
        with open('dataset/vevo_meta/chord_root.json') as json_file:
            chordRootDic = json.load(json_file)
        with open('dataset/vevo_meta/chord_attr.json') as json_file:
            chordAttrDic = json.load(json_file)

        gen_seq = torch.full((1,target_seq_length), CHORD_PAD, dtype=TORCH_LABEL_TYPE, device=self.device)
        gen_seq_root = torch.full((1,target_seq_length), CHORD_ROOT_PAD, dtype=TORCH_LABEL_TYPE, device=self.device)
        gen_seq_attr = torch.full((1,target_seq_length), CHORD_ATTR_PAD, dtype=TORCH_LABEL_TYPE, device=self.device)
        
        num_primer = len(primer)
        gen_seq[..., :num_primer] = primer.type(TORCH_LABEL_TYPE).to(self.device)
        gen_seq_root[..., :num_primer] = primer_root.type(TORCH_LABEL_TYPE).to(self.device)
        gen_seq_attr[..., :num_primer] = primer_attr.type(TORCH_LABEL_TYPE).to(self.device)

        cur_i = num_primer
        while(cur_i < target_seq_length):
            y = self.softmax( self.forward( gen_seq[..., :cur_i], gen_seq_root[..., :cur_i], gen_seq_attr[..., :cur_i], 
                                           feature_semantic_list, feature_key, feature_scene_offset, feature_motion, feature_emotion) )[..., :CHORD_END]
            
            token_probs = y[:, cur_i-1, :]
            if(beam == 0):
                beam_ran = 2.0
            else:
                beam_ran = random.uniform(0,1)
            if(beam_ran <= beam_chance):
                token_probs = token_probs.flatten()
                top_res, top_i = torch.topk(token_probs, beam)
                beam_rows = top_i // CHORD_SIZE
                beam_cols = top_i % CHORD_SIZE
                gen_seq = gen_seq[beam_rows, :]
                gen_seq[..., cur_i] = beam_cols
            else:
                # token_probs.shape : [1, 157] 
                # 0: N, 1: C, ... , 156: B:maj7
                # 157 chordEnd 158 padding
                if max_conseq_N == 0:
                    token_probs[0][0] = 0.0
                isMaxChord = True
                if cur_i >= max_conseq_chord :
                    preChord = gen_seq[0][cur_i-1].item()      
                    for k in range (1, max_conseq_chord):
                        if preChord != gen_seq[0][cur_i-1-k].item():
                            isMaxChord = False
                else:
                    isMaxChord = False
                
                if isMaxChord:
                    preChord = gen_seq[0][cur_i-1].item()
                    token_probs[0][preChord] = 0.0
                
                distrib = torch.distributions.categorical.Categorical(probs=token_probs)
                next_token = distrib.sample()
                gen_seq[:, cur_i] = next_token
                gen_chord = chordInvDic[ str( next_token.item() ) ]
                
                chord_arr = gen_chord.split(":")
                if len(chord_arr) == 1:
                    chordRootID = chordRootDic[chord_arr[0]]
                    chordAttrID = 1
                    chordRootID = torch.tensor([chordRootID]).to(self.device)
                    chordAttrID = torch.tensor([chordAttrID]).to(self.device)
                    gen_seq_root[:, cur_i] = chordRootID
                    gen_seq_attr[:, cur_i] = chordAttrID
                elif len(chord_arr) == 2:
                    chordRootID = chordRootDic[chord_arr[0]]
                    chordAttrID = chordAttrDic[chord_arr[1]]
                    chordRootID = torch.tensor([chordRootID]).to(self.device)
                    chordAttrID = torch.tensor([chordAttrID]).to(self.device)
                    gen_seq_root[:, cur_i] = chordRootID
                    gen_seq_attr[:, cur_i] = chordAttrID
                    
                # Let the transformer decide to end if it wants to
                if(next_token == CHORD_END):
                    print("Model called end of sequence at:", cur_i, "/", target_seq_length)
                    break
            cur_i += 1
            if(cur_i % 50 == 0):
                print(cur_i, "/", target_seq_length)
        return gen_seq[:, :cur_i]