aman5614 commited on
Commit
28da097
·
verified ·
1 Parent(s): 7eef626

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +469 -0
app.py ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ warnings.filterwarnings('ignore')
3
+
4
+ import numpy as np
5
+ import pandas as pd
6
+ import matplotlib.pyplot as plt
7
+ import seaborn as sns
8
+ from matplotlib.colors import ListedColormap
9
+ from sklearn.model_selection import train_test_split
10
+ from scipy.stats import boxcox
11
+ from sklearn.pipeline import Pipeline
12
+ from sklearn.preprocessing import StandardScaler
13
+ from sklearn.neighbors import KNeighborsClassifier
14
+ from sklearn.svm import SVC
15
+ from sklearn.model_selection import GridSearchCV, StratifiedKFold
16
+ from sklearn.metrics import classification_report, accuracy_score
17
+ from sklearn.tree import DecisionTreeClassifier
18
+ from sklearn.ensemble import RandomForestClassifier
19
+
20
+ %matplotlib inline
21
+
22
+ # Set the resolution of the plotted figures
23
+ plt.rcParams['figure.dpi'] = 200
24
+
25
+ # Configure Seaborn plot styles: Set background color and use dark grid
26
+ sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid')
27
+
28
+ df = pd.read_csv("/content/heart.csv")
29
+ df
30
+ df.info()
31
+
32
+ # Define the continuous features
33
+ continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
34
+
35
+ # Identify the features to be converted to object data type
36
+ features_to_convert = [feature for feature in df.columns if feature not in continuous_features]
37
+
38
+ # Convert the identified features to object data type
39
+ df[features_to_convert] = df[features_to_convert].astype('object')
40
+
41
+ df.dtypes
42
+
43
+ # Get the summary statistics for numerical variables
44
+ df.describe().T
45
+
46
+ # Get the summary statistics for categorical variables
47
+ df.describe(include='object')
48
+
49
+ # Filter out continuous features for the univariate analysis
50
+ df_continuous = df[continuous_features]
51
+
52
+ # Set up the subplot
53
+ fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(15, 10))
54
+
55
+ # Loop to plot histograms for each continuous feature
56
+ for i, col in enumerate(df_continuous.columns):
57
+ x = i // 3
58
+ y = i % 3
59
+ values, bin_edges = np.histogram(df_continuous[col],
60
+ range=(np.floor(df_continuous[col].min()), np.ceil(df_continuous[col].max())))
61
+
62
+ graph = sns.histplot(data=df_continuous, x=col, bins=bin_edges, kde=True, ax=ax[x, y],
63
+ edgecolor='none', color='red', alpha=0.6, line_kws={'lw': 3})
64
+ ax[x, y].set_xlabel(col, fontsize=15)
65
+ ax[x, y].set_ylabel('Count', fontsize=12)
66
+ ax[x, y].set_xticks(np.round(bin_edges, 1))
67
+ ax[x, y].set_xticklabels(ax[x, y].get_xticks(), rotation=45)
68
+ ax[x, y].grid(color='lightgrey')
69
+
70
+ for j, p in enumerate(graph.patches):
71
+ ax[x, y].annotate('{}'.format(p.get_height()), (p.get_x() + p.get_width() / 2, p.get_height() + 1),
72
+ ha='center', fontsize=10, fontweight="bold")
73
+
74
+ textstr = '\n'.join((
75
+ r'$\mu=%.2f$' % df_continuous[col].mean(),
76
+ r'$\sigma=%.2f$' % df_continuous[col].std()
77
+ ))
78
+ ax[x, y].text(0.75, 0.9, textstr, transform=ax[x, y].transAxes, fontsize=12, verticalalignment='top',
79
+ color='white', bbox=dict(boxstyle='round', facecolor='#ff826e', edgecolor='white', pad=0.5))
80
+
81
+ ax[1,2].axis('off')
82
+ plt.suptitle('Distribution of Continuous Variables', fontsize=20)
83
+ plt.tight_layout()
84
+ plt.subplots_adjust(top=0.92)
85
+ plt.show()
86
+
87
+ # Filter out categorical features for the univariate analysis
88
+ categorical_features = df.columns.difference(continuous_features)
89
+ df_categorical = df[categorical_features]
90
+
91
+ # Set up the subplot for a 4x2 layout
92
+ fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(15, 18))
93
+
94
+ # Loop to plot bar charts for each categorical feature in the 4x2 layout
95
+ for i, col in enumerate(categorical_features):
96
+ row = i // 2
97
+ col_idx = i % 2
98
+
99
+ # Calculate frequency percentages
100
+ value_counts = df[col].value_counts(normalize=True).mul(100).sort_values()
101
+
102
+ # Plot bar chart
103
+ value_counts.plot(kind='barh', ax=ax[row, col_idx], width=0.8, color='red')
104
+
105
+ # Add frequency percentages to the bars
106
+ for index, value in enumerate(value_counts):
107
+ ax[row, col_idx].text(value, index, str(round(value, 1)) + '%', fontsize=15, weight='bold', va='center')
108
+
109
+ ax[row, col_idx].set_xlim([0, 95])
110
+ ax[row, col_idx].set_xlabel('Frequency Percentage', fontsize=12)
111
+ ax[row, col_idx].set_title(f'{col}', fontsize=20)
112
+
113
+ ax[4,1].axis('off')
114
+ plt.suptitle('Distribution of Categorical Variables', fontsize=22)
115
+ plt.tight_layout()
116
+ plt.subplots_adjust(top=0.95)
117
+ plt.show()
118
+ # Set color palette
119
+ sns.set_palette(['#ff826e', 'red'])
120
+
121
+ # Create the subplots
122
+ fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]})
123
+
124
+ # Loop through each continuous feature to create barplots and kde plots
125
+ for i, col in enumerate(continuous_features):
126
+ # Barplot showing the mean value of the feature for each target category
127
+ graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0])
128
+
129
+ # KDE plot showing the distribution of the feature for each target category
130
+ sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0')
131
+ sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1')
132
+ ax[i,1].set_yticks([])
133
+ ax[i,1].legend(title='Heart Disease', loc='upper right')
134
+
135
+ # Add mean values to the barplot
136
+ for cont in graph.containers:
137
+ graph.bar_label(cont, fmt=' %.3g')
138
+
139
+ # Set the title for the entire figure
140
+ plt.suptitle('Continuous Features vs Target Distribution', fontsize=22)
141
+ plt.tight_layout()
142
+ plt.show()
143
+
144
+ # Set color palette
145
+ sns.set_palette(['#ff826e', 'red'])
146
+
147
+ # Create the subplots
148
+ fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]})
149
+
150
+ # Loop through each continuous feature to create barplots and kde plots
151
+ for i, col in enumerate(continuous_features):
152
+ # Barplot showing the mean value of the feature for each target category
153
+ graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0])
154
+
155
+ # KDE plot showing the distribution of the feature for each target category
156
+ sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0')
157
+ sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1')
158
+ ax[i,1].set_yticks([])
159
+ ax[i,1].legend(title='Heart Disease', loc='upper right')
160
+
161
+ # Add mean values to the barplot
162
+ for cont in graph.containers:
163
+ graph.bar_label(cont, fmt=' %.3g')
164
+
165
+ # Set the title for the entire figure
166
+ plt.suptitle('Continuous Features vs Target Distribution', fontsize=22)
167
+ plt.tight_layout()
168
+ plt.show()
169
+
170
+ # Remove 'target' from the categorical_features
171
+ categorical_features = [feature for feature in categorical_features if feature != 'target']
172
+ fig, ax = plt.subplots(nrows=2, ncols=4, figsize=(15,10))
173
+
174
+ for i,col in enumerate(categorical_features):
175
+
176
+ # Create a cross tabulation showing the proportion of purchased and non-purchased loans for each category of the feature
177
+ cross_tab = pd.crosstab(index=df[col], columns=df['target'])
178
+
179
+ # Using the normalize=True argument gives us the index-wise proportion of the data
180
+ cross_tab_prop = pd.crosstab(index=df[col], columns=df['target'], normalize='index')
181
+
182
+ # Define colormap
183
+ cmp = ListedColormap(['#ff826e', 'red'])
184
+
185
+ # Plot stacked bar charts
186
+ x, y = i//4, i%4
187
+ cross_tab_prop.plot(kind='bar', ax=ax[x,y], stacked=True, width=0.8, colormap=cmp,
188
+ legend=False, ylabel='Proportion', sharey=True)
189
+
190
+ # Add the proportions and counts of the individual bars to our plot
191
+ for idx, val in enumerate([*cross_tab.index.values]):
192
+ for (proportion, count, y_location) in zip(cross_tab_prop.loc[val],cross_tab.loc[val],cross_tab_prop.loc[val].cumsum()):
193
+ ax[x,y].text(x=idx-0.3, y=(y_location-proportion)+(proportion/2)-0.03,
194
+ s = f' {count}\n({np.round(proportion * 100, 1)}%)',
195
+ color = "black", fontsize=9, fontweight="bold")
196
+
197
+ # Add legend
198
+ ax[x,y].legend(title='target', loc=(0.7,0.9), fontsize=8, ncol=2)
199
+ # Set y limit
200
+ ax[x,y].set_ylim([0,1.12])
201
+ # Rotate xticks
202
+ ax[x,y].set_xticklabels(ax[x,y].get_xticklabels(), rotation=0)
203
+
204
+
205
+ plt.suptitle('Categorical Features vs Target Stacked Barplots', fontsize=22)
206
+ plt.tight_layout()
207
+ plt.show()
208
+
209
+ # Check for missing values in the dataset
210
+ df.isnull().sum().sum()
211
+ continuous_features
212
+
213
+ Q1 = df[continuous_features].quantile(0.25)
214
+ Q3 = df[continuous_features].quantile(0.75)
215
+ IQR = Q3 - Q1
216
+ outliers_count_specified = ((df[continuous_features] < (Q1 - 1.5 * IQR)) | (df[continuous_features] > (Q3 + 1.5 * IQR))).sum()
217
+
218
+ outliers_count_specified
219
+
220
+ # Implementing one-hot encoding on the specified categorical features
221
+ df_encoded = pd.get_dummies(df, columns=['cp', 'restecg', 'thal'], drop_first=True)
222
+
223
+ # Convert the rest of the categorical variables that don't need one-hot encoding to integer data type
224
+ features_to_convert = ['sex', 'fbs', 'exang', 'slope', 'ca', 'target']
225
+ for feature in features_to_convert:
226
+ df_encoded[feature] = df_encoded[feature].astype(int)
227
+
228
+ df_encoded.dtypes
229
+ # Displaying the resulting DataFrame after one-hot encoding
230
+ df_encoded.head()
231
+ # Define the features (X) and the output labels (y)
232
+ X = df_encoded.drop('target', axis=1)
233
+ y = df_encoded['target']
234
+ # Splitting data into train and test sets
235
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y)
236
+ continuous_features
237
+ # Adding a small constant to 'oldpeak' to make all values positive
238
+ X_train['oldpeak'] = X_train['oldpeak'] + 0.001
239
+ X_test['oldpeak'] = X_test['oldpeak'] + 0.001
240
+
241
+ # Checking the distribution of the continuous features
242
+ fig, ax = plt.subplots(2, 5, figsize=(15,10))
243
+
244
+ # Original Distributions
245
+ for i, col in enumerate(continuous_features):
246
+ sns.histplot(X_train[col], kde=True, ax=ax[0,i], color='#ff826e').set_title(f'Original {col}')
247
+
248
+
249
+ # Applying Box-Cox Transformation
250
+ # Dictionary to store lambda values for each feature
251
+ lambdas = {}
252
+
253
+ for i, col in enumerate(continuous_features):
254
+ # Only apply box-cox for positive values
255
+ if X_train[col].min() > 0:
256
+ X_train[col], lambdas[col] = boxcox(X_train[col])
257
+ # Applying the same lambda to test data
258
+ X_test[col] = boxcox(X_test[col], lmbda=lambdas[col])
259
+ sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='red').set_title(f'Transformed {col}')
260
+ else:
261
+ sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='green').set_title(f'{col} (Not Transformed)')
262
+
263
+ fig.tight_layout()
264
+ plt.show()
265
+
266
+ X_train.head()
267
+
268
+ # Define the base DT model
269
+ dt_base = DecisionTreeClassifier(random_state=0)
270
+
271
+ def tune_clf_hyperparameters(clf, param_grid, X_train, y_train, scoring='recall', n_splits=3):
272
+ '''
273
+ This function optimizes the hyperparameters for a classifier by searching over a specified hyperparameter grid.
274
+ It uses GridSearchCV and cross-validation (StratifiedKFold) to evaluate different combinations of hyperparameters.
275
+ The combination with the highest recall for class 1 is selected as the default scoring metric.
276
+ The function returns the classifier with the optimal hyperparameters.
277
+ '''
278
+
279
+ # Create the cross-validation object using StratifiedKFold to ensure the class distribution is the same across all the folds
280
+ cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=0)
281
+
282
+ # Create the GridSearchCV object
283
+ clf_grid = GridSearchCV(clf, param_grid, cv=cv, scoring=scoring, n_jobs=-1)
284
+
285
+ # Fit the GridSearchCV object to the training data
286
+ clf_grid.fit(X_train, y_train)
287
+
288
+ # Get the best hyperparameters
289
+ best_hyperparameters = clf_grid.best_params_
290
+
291
+ # Return best_estimator_ attribute which gives us the best model that has been fitted to the training data
292
+ return clf_grid.best_estimator_, best_hyperparameters
293
+
294
+ # Hyperparameter grid for DT
295
+ param_grid_dt = {
296
+ 'criterion': ['gini', 'entropy'],
297
+ 'max_depth': [2,3],
298
+ 'min_samples_split': [2, 3, 4],
299
+ 'min_samples_leaf': [1, 2]
300
+ }
301
+ # Call the function for hyperparameter tuning
302
+ best_dt, best_dt_hyperparams = tune_clf_hyperparameters(dt_base, param_grid_dt, X_train, y_train)
303
+
304
+ print('DT Optimal Hyperparameters: \n', best_dt_hyperparams)
305
+ # Evaluate the optimized model on the train data
306
+ print(classification_report(y_train, best_dt.predict(X_train)))
307
+ # Evaluate the optimized model on the test data
308
+ print(classification_report(y_test, best_dt.predict(X_test)))
309
+ def evaluate_model(model, X_test, y_test, model_name):
310
+ """
311
+ Evaluates the performance of a trained model on test data using various metrics.
312
+ """
313
+ # Make predictions
314
+ y_pred = model.predict(X_test)
315
+
316
+ # Get classification report
317
+ report = classification_report(y_test, y_pred, output_dict=True)
318
+
319
+ # Extracting metrics
320
+ metrics = {
321
+ "precision_0": report["0"]["precision"],
322
+ "precision_1": report["1"]["precision"],
323
+ "recall_0": report["0"]["recall"],
324
+ "recall_1": report["1"]["recall"],
325
+ "f1_0": report["0"]["f1-score"],
326
+ "f1_1": report["1"]["f1-score"],
327
+ "macro_avg_precision": report["macro avg"]["precision"],
328
+ "macro_avg_recall": report["macro avg"]["recall"],
329
+ "macro_avg_f1": report["macro avg"]["f1-score"],
330
+ "accuracy": accuracy_score(y_test, y_pred)
331
+ }
332
+
333
+ # Convert dictionary to dataframe
334
+ df = pd.DataFrame(metrics, index=[model_name]).round(2)
335
+
336
+ return df
337
+ dt_evaluation = evaluate_model(best_dt, X_test, y_test, 'DT')
338
+ dt_evaluation
339
+ rf_base = RandomForestClassifier(random_state=0)
340
+ param_grid_rf = {
341
+ 'n_estimators': [10, 30, 50, 70, 100],
342
+ 'criterion': ['gini', 'entropy'],
343
+ 'max_depth': [2, 3, 4],
344
+ 'min_samples_split': [2, 3, 4, 5],
345
+ 'min_samples_leaf': [1, 2, 3],
346
+ 'bootstrap': [True, False]
347
+ }
348
+ # Using the tune_clf_hyperparameters function to get the best estimator
349
+ best_rf, best_rf_hyperparams = tune_clf_hyperparameters(rf_base, param_grid_rf, X_train, y_train)
350
+ print('RF Optimal Hyperparameters: \n', best_rf_hyperparams)
351
+
352
+ # Evaluate the optimized model on the train data
353
+ print(classification_report(y_train, best_rf.predict(X_train)))
354
+
355
+ # Evaluate the optimized model on the test data
356
+ print(classification_report(y_test, best_rf.predict(X_test)))
357
+
358
+ rf_evaluation = evaluate_model(best_rf, X_test, y_test, 'RF')
359
+ rf_evaluation
360
+
361
+ # Define the base KNN model and set up the pipeline with scaling
362
+ knn_pipeline = Pipeline([
363
+ ('scaler', StandardScaler()),
364
+ ('knn', KNeighborsClassifier())
365
+ ])
366
+ # Hyperparameter grid for KNN
367
+ knn_param_grid = {
368
+ 'knn__n_neighbors': list(range(1, 12)),
369
+ 'knn__weights': ['uniform', 'distance'],
370
+ 'knn__p': [1, 2] # 1: Manhattan distance, 2: Euclidean distance
371
+ }
372
+ # Hyperparameter tuning for KNN
373
+ best_knn, best_knn_hyperparams = tune_clf_hyperparameters(knn_pipeline, knn_param_grid, X_train, y_train)
374
+ print('KNN Optimal Hyperparameters: \n', best_knn_hyperparams)
375
+ # Evaluate the optimized model on the train data
376
+ print(classification_report(y_train, best_knn.predict(X_train)))
377
+ # Evaluate the optimized model on the test data
378
+ print(classification_report(y_test, best_knn.predict(X_test)))
379
+ knn_evaluation = evaluate_model(best_knn, X_test, y_test, 'KNN')
380
+ knn_evaluation
381
+
382
+ svm_pipeline = Pipeline([
383
+ ('scaler', StandardScaler()),
384
+ ('svm', SVC(probability=True))
385
+ ])
386
+
387
+ param_grid_svm = {
388
+ 'svm__C': [0.0011, 0.005, 0.01, 0.05, 0.1, 1, 10, 20],
389
+ 'svm__kernel': ['linear', 'rbf', 'poly'],
390
+ 'svm__gamma': ['scale', 'auto', 0.1, 0.5, 1, 5],
391
+ 'svm__degree': [2, 3, 4]
392
+ }
393
+ # Call the function for hyperparameter tuning
394
+ best_svm, best_svm_hyperparams = tune_clf_hyperparameters(svm_pipeline, param_grid_svm, X_train, y_train)
395
+ print('SVM Optimal Hyperparameters: \n', best_svm_hyperparams)
396
+ # Evaluate the optimized model on the train data
397
+ print(classification_report(y_train, best_svm.predict(X_train)))
398
+ svm_evaluation = evaluate_model(best_svm, X_test, y_test, 'SVM')
399
+ svm_evaluation
400
+ # Concatenate the dataframes
401
+ all_evaluations = [dt_evaluation, rf_evaluation, knn_evaluation, svm_evaluation]
402
+ results = pd.concat(all_evaluations)
403
+
404
+ # Sort by 'recall_1'
405
+ results = results.sort_values(by='recall_1', ascending=False).round(2)
406
+ results
407
+ # Sort values based on 'recall_1'
408
+ results.sort_values(by='recall_1', ascending=True, inplace=True)
409
+ recall_1_scores = results['recall_1']
410
+
411
+ # Plot the horizontal bar chart
412
+ fig, ax = plt.subplots(figsize=(12, 7), dpi=70)
413
+ ax.barh(results.index, recall_1_scores, color='red')
414
+
415
+ # Annotate the values and indexes
416
+ for i, (value, name) in enumerate(zip(recall_1_scores, results.index)):
417
+ ax.text(value + 0.01, i, f"{value:.2f}", ha='left', va='center', fontweight='bold', color='red', fontsize=15)
418
+ ax.text(0.1, i, name, ha='left', va='center', fontweight='bold', color='white', fontsize=25)
419
+
420
+ # Remove yticks
421
+ ax.set_yticks([])
422
+
423
+ # Set x-axis limit
424
+ ax.set_xlim([0, 1.2])
425
+
426
+ # Add title and xlabel
427
+ plt.title("Recall for Positive Class across Models", fontweight='bold', fontsize=22)
428
+ plt.xlabel('Recall Value', fontsize=16)
429
+ plt.show()
430
+
431
+ !pip install gradio
432
+ import gradio as gr
433
+ import numpy as np
434
+ from sklearn.ensemble import RandomForestClassifier
435
+
436
+ # Example: Define and train a Random Forest model
437
+ model = RandomForestClassifier()
438
+
439
+ # Dummy training data (replace with your actual data)
440
+ X_train = np.random.rand(100, 13) # 100 samples, 12 features (one for each input)
441
+ y_train = np.random.randint(2, size=100) # Binary target
442
+
443
+ # Train the model
444
+ model.fit(X_train, y_train)
445
+
446
+ # Define the prediction function
447
+ def predict(*inputs):
448
+ try:
449
+ # Convert inputs to a numpy array and reshape it to match the model's expected input shape
450
+ input_array = np.array(inputs).reshape(1, -1)
451
+ prediction = model.predict(input_array) # Make a prediction
452
+ return str(prediction[0]) # Return the prediction (single value) as a string for display
453
+ except Exception as e:
454
+ return str(e) # Return any errors as a string (for debugging)
455
+
456
+ # Define the features (input fields) for Gradio
457
+ features = [
458
+ 'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
459
+ 'exang', 'oldpeak', 'slope', 'ca','thal'
460
+ ]
461
+
462
+ # Create Gradio input components (use gr.Number for numeric inputs)
463
+ inputs = [gr.Number(label=feature, value=0) for feature in features]
464
+
465
+ # Output component (show the prediction result)
466
+ outputs = gr.Textbox(label="Prediction Output")
467
+
468
+ # Create and launch the Gradio interface
469
+ gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch()