amaye15
commited on
Commit
·
78d359b
1
Parent(s):
933c40c
Version 1 - Working
Browse files- app.py +166 -138
- check.py +10 -0
- create_repo.py +9 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,183 +1,211 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
6 |
|
7 |
|
8 |
-
|
9 |
-
# image = prompts["image"] # Get the image from prompts
|
10 |
-
# points = prompts["points"] # Get the points from prompts
|
11 |
|
12 |
-
# # Print the collected inputs for debugging or logging
|
13 |
-
# print("Image received:", image)
|
14 |
-
# print("Points received:", points)
|
15 |
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
# device = torch.device("cpu")
|
20 |
|
21 |
-
|
22 |
-
# "facebook/sam2-hiera-base-plus", device=device
|
23 |
-
# )
|
24 |
|
25 |
-
|
26 |
-
#
|
27 |
-
# # masks, _, _ = predictor.predict([[point[0], point[1]] for point in points])
|
28 |
-
# input_point = [[point[0], point[1]] for point in points]
|
29 |
-
# input_label = [1]
|
30 |
-
# masks, _, _ = predictor.predict(
|
31 |
-
# point_coords=input_point, point_labels=input_label
|
32 |
-
# )
|
33 |
-
# print("Predicted Mask:", masks)
|
34 |
|
35 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
# fn=prompter, # Use the custom prompter function
|
41 |
-
# inputs=ImagePrompter(
|
42 |
-
# show_label=False
|
43 |
-
# ), # ImagePrompter for image input and point selection
|
44 |
-
# outputs=[
|
45 |
-
# gr.Image(show_label=False), # Display the image
|
46 |
-
# gr.Dataframe(label="Points"), # Display the points in a DataFrame
|
47 |
-
# ],
|
48 |
-
# title="Image Point Collector",
|
49 |
-
# description="Upload an image, click on it, and get the coordinates of the clicked points.",
|
50 |
-
# )
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
# from gradio_image_prompter import ImagePrompter
|
58 |
-
# import torch
|
59 |
-
# from sam2.sam2_image_predictor import SAM2ImagePredictor
|
60 |
|
|
|
61 |
|
62 |
-
|
63 |
-
# image = prompts["image"] # Get the image from prompts
|
64 |
-
# points = prompts["points"] # Get the points from prompts
|
65 |
|
66 |
-
# # Print the collected inputs for debugging or logging
|
67 |
-
# print("Image received:", image)
|
68 |
-
# print("Points received:", points)
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
# # Load the SAM2ImagePredictor model
|
73 |
-
# predictor = SAM2ImagePredictor.from_pretrained(
|
74 |
-
# "facebook/sam2-hiera-base-plus", device=device
|
75 |
-
# )
|
76 |
|
77 |
-
|
78 |
-
# with torch.inference_mode():
|
79 |
-
# predictor.set_image(image)
|
80 |
-
# input_point = [[point[0], point[1]] for point in points]
|
81 |
-
# input_label = [1] * len(points) # Assuming all points are foreground
|
82 |
-
# masks, _, _ = predictor.predict(
|
83 |
-
# point_coords=input_point, point_labels=input_label
|
84 |
-
# )
|
85 |
|
86 |
-
|
87 |
-
# print("Predicted Mask:", masks)
|
88 |
|
89 |
-
|
90 |
-
# predicted_mask = masks[0]
|
91 |
|
92 |
-
#
|
|
|
93 |
|
94 |
-
#
|
|
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
|
99 |
-
#
|
|
|
|
|
100 |
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
# fn=prompter, # Use the custom prompter function
|
105 |
-
# inputs=ImagePrompter(
|
106 |
-
# show_label=False
|
107 |
-
# ), # ImagePrompter for image input and point selection
|
108 |
-
# outputs=gr.AnnotatedImage(), # Display the image with the predicted mask
|
109 |
-
# title="Image Point Collector with Mask Overlay",
|
110 |
-
# description="Upload an image, click on it, and get the predicted mask overlayed on the image.",
|
111 |
-
# )
|
112 |
|
113 |
-
#
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
116 |
|
117 |
-
|
118 |
-
from gradio_image_prompter import ImagePrompter
|
119 |
-
import torch
|
120 |
-
import numpy as np
|
121 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
122 |
-
from PIL import Image
|
123 |
|
124 |
|
125 |
-
def
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
device = torch.device("cpu")
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
masks, _, _ = predictor.predict(
|
146 |
-
point_coords=input_point, point_labels=input_label, multimask_output=True
|
147 |
-
)
|
148 |
|
149 |
-
|
150 |
-
overlay_images = []
|
151 |
-
for i, mask in enumerate(masks):
|
152 |
-
print(f"Predicted Mask {i+1}:", mask)
|
153 |
-
red_mask = np.zeros_like(image)
|
154 |
-
red_mask[:, :, 0] = mask.astype(np.uint8) * 255 # Apply the red channel
|
155 |
-
red_mask = Image.fromarray(red_mask)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
)
|
181 |
|
182 |
# Launch the Gradio app
|
183 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_image_prompter import ImagePrompter
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
6 |
+
from PIL import Image
|
7 |
+
from uuid import uuid4
|
8 |
+
import os
|
9 |
+
from huggingface_hub import upload_folder
|
10 |
+
import shutil
|
11 |
|
12 |
+
MODEL = "facebook/sam2-hiera-large"
|
13 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
15 |
|
16 |
|
17 |
+
GLOBALS = {}
|
|
|
|
|
18 |
|
|
|
|
|
|
|
19 |
|
20 |
+
IMAGE = None
|
21 |
+
MASKS = None
|
22 |
+
INDEX = None
|
23 |
|
|
|
24 |
|
25 |
+
def prompter(prompts):
|
|
|
|
|
26 |
|
27 |
+
image = np.array(prompts["image"]) # Convert the image to a numpy array
|
28 |
+
points = prompts["points"] # Get the points from prompts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# Perform inference with multimask_output=True
|
31 |
+
with torch.inference_mode():
|
32 |
+
PREDICTOR.set_image(image)
|
33 |
+
input_point = [[point[0], point[1]] for point in points]
|
34 |
+
input_label = [1] * len(points) # Assuming all points are foreground
|
35 |
+
masks, _, _ = PREDICTOR.predict(
|
36 |
+
point_coords=input_point, point_labels=input_label, multimask_output=True
|
37 |
+
)
|
38 |
|
39 |
+
# Prepare individual images with separate overlays
|
40 |
+
overlay_images = []
|
41 |
+
for i, mask in enumerate(masks):
|
42 |
+
print(f"Predicted Mask {i+1}:", mask.shape)
|
43 |
+
red_mask = np.zeros_like(image)
|
44 |
+
red_mask[:, :, 0] = mask.astype(np.uint8) * 255 # Apply the red channel
|
45 |
+
red_mask = Image.fromarray(red_mask)
|
46 |
|
47 |
+
# Convert the original image to a PIL image
|
48 |
+
original_image = Image.fromarray(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Blend the original image with the red mask
|
51 |
+
blended_image = Image.blend(original_image, red_mask, alpha=0.5)
|
52 |
|
53 |
+
# Add the blended image to the list
|
54 |
+
overlay_images.append(blended_image)
|
55 |
|
56 |
+
global IMAGE, MASKS
|
|
|
|
|
|
|
57 |
|
58 |
+
IMAGE, MASKS = image, masks
|
59 |
|
60 |
+
return overlay_images[0], overlay_images[1], overlay_images[2], masks
|
|
|
|
|
61 |
|
|
|
|
|
|
|
62 |
|
63 |
+
def select_mask(
|
64 |
+
selected_mask_index,
|
65 |
+
mask1,
|
66 |
+
mask2,
|
67 |
+
mask3,
|
68 |
+
):
|
69 |
+
masks = [mask1, mask2, mask3]
|
70 |
+
global INDEX
|
71 |
+
INDEX = selected_mask_index
|
72 |
+
return masks[selected_mask_index]
|
73 |
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def save_selected_mask(image, mask, output_dir="output"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
output_dir = os.path.join(os.getcwd(), output_dir)
|
|
|
78 |
|
79 |
+
os.makedirs(output_dir, exist_ok=True)
|
|
|
80 |
|
81 |
+
# Generate a unique UUID for the folder name
|
82 |
+
folder_id = str(uuid4())
|
83 |
|
84 |
+
# Create a path for the new folder
|
85 |
+
folder_path = os.path.join(output_dir, folder_id)
|
86 |
|
87 |
+
# Ensure the folder is created
|
88 |
+
os.makedirs(folder_path, exist_ok=True)
|
89 |
|
90 |
+
# Define the paths for saving the image and mask
|
91 |
+
image_path = os.path.join(folder_path, "image.npy")
|
92 |
+
mask_path = os.path.join(folder_path, "mask.npy")
|
93 |
|
94 |
+
# Save the image and mask to the respective paths
|
95 |
+
with open(image_path, "wb") as f:
|
96 |
+
np.save(f, IMAGE)
|
97 |
|
98 |
+
with open(mask_path, "wb") as f:
|
99 |
+
np.save(f, MASKS[INDEX])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# Upload the folder to the Hugging Face Hub
|
102 |
+
upload_folder(
|
103 |
+
folder_path=output_dir,
|
104 |
+
# path_in_repo=path_in_repo,
|
105 |
+
repo_id="amaye15/object-segmentation",
|
106 |
+
repo_type="dataset",
|
107 |
+
# ignore_patterns="**/logs/*.txt", # Adjust this if needed
|
108 |
+
)
|
109 |
|
110 |
+
shutil.rmtree(folder_path)
|
111 |
|
112 |
+
return f"Image and mask saved to {folder_path}."
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
|
115 |
+
def save_dataset_name(key, dataset_name):
|
116 |
+
global GLOBALS
|
117 |
+
GLOBALS[key] = dataset_name
|
118 |
|
119 |
+
iframe_code = f"""
|
120 |
+
<iframe
|
121 |
+
src="https://huggingface.co/datasets/{dataset_name}/embed/viewer/default/train"
|
122 |
+
frameborder="0"
|
123 |
+
width="100%"
|
124 |
+
height="560px"
|
125 |
+
></iframe>
|
126 |
+
"""
|
127 |
+
return f"Huggingface Dataset: {dataset_name}", iframe_code
|
128 |
|
|
|
129 |
|
130 |
+
# Define the Gradio Blocks app
|
131 |
+
with gr.Blocks() as demo:
|
132 |
+
with gr.Tab("Setup"):
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column():
|
135 |
+
source = gr.Textbox(label="Source Dataset")
|
136 |
+
source_display = gr.Markdown()
|
137 |
+
iframe_display = gr.HTML()
|
138 |
|
139 |
+
source.change(
|
140 |
+
save_dataset_name,
|
141 |
+
inputs=(gr.State("source_dataset"), source),
|
142 |
+
outputs=(source_display, iframe_display),
|
143 |
+
)
|
|
|
|
|
|
|
144 |
|
145 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
destination = gr.Textbox(label="Destination Dataset")
|
148 |
+
destination_display = gr.Markdown()
|
149 |
|
150 |
+
destination.change(
|
151 |
+
save_dataset_name,
|
152 |
+
inputs=(gr.State("destination_dataset"), destination),
|
153 |
+
outputs=destination_display,
|
154 |
+
)
|
155 |
|
156 |
+
with gr.Tab("Object Mask - Point Prompt"):
|
157 |
+
gr.Markdown("# Image Point Collector with Multiple Separate Mask Overlays")
|
158 |
+
gr.Markdown(
|
159 |
+
"Upload an image, click on it, and get each predicted mask overlaid separately in red on individual images."
|
160 |
+
)
|
161 |
+
|
162 |
+
with gr.Row():
|
163 |
+
with gr.Column():
|
164 |
+
# Input: ImagePrompter
|
165 |
+
image_input = ImagePrompter(show_label=False)
|
166 |
+
submit_button = gr.Button("Submit")
|
167 |
+
with gr.Row():
|
168 |
+
with gr.Column():
|
169 |
+
# Outputs: Up to 3 overlay images
|
170 |
+
image_output_1 = gr.Image(show_label=False)
|
171 |
+
with gr.Column():
|
172 |
+
image_output_2 = gr.Image(show_label=False)
|
173 |
+
with gr.Column():
|
174 |
+
image_output_3 = gr.Image(show_label=False)
|
175 |
+
|
176 |
+
# Dropdown for selecting the correct mask
|
177 |
+
with gr.Row():
|
178 |
+
mask_selector = gr.Radio(
|
179 |
+
label="Select the correct mask",
|
180 |
+
choices=["Mask 1", "Mask 2", "Mask 3"],
|
181 |
+
type="index",
|
182 |
+
)
|
183 |
+
# selected_mask_output = gr.Image(show_label=False)
|
184 |
+
|
185 |
+
save_button = gr.Button("Save Selected Mask and Image")
|
186 |
+
save_message = gr.Textbox(visible=False)
|
187 |
+
|
188 |
+
# Define the action triggered by the submit button
|
189 |
+
submit_button.click(
|
190 |
+
fn=prompter,
|
191 |
+
inputs=image_input,
|
192 |
+
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
|
193 |
+
)
|
194 |
|
195 |
+
# Define the action triggered by mask selection
|
196 |
+
mask_selector.change(
|
197 |
+
fn=select_mask,
|
198 |
+
inputs=[mask_selector, image_output_1, image_output_2, image_output_3],
|
199 |
+
outputs=gr.State(),
|
200 |
+
)
|
201 |
+
|
202 |
+
# Define the action triggered by the save button
|
203 |
+
save_button.click(
|
204 |
+
fn=save_selected_mask,
|
205 |
+
inputs=[gr.State(), gr.State()],
|
206 |
+
outputs=save_message,
|
207 |
+
show_progress=True,
|
208 |
+
)
|
|
|
209 |
|
210 |
# Launch the Gradio app
|
211 |
demo.launch()
|
check.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
# Load the image data from the .npy file
|
5 |
+
image = np.load("/Users/andrewmayes/Dev/image/image.npy")
|
6 |
+
|
7 |
+
# Display the image using matplotlib
|
8 |
+
plt.imshow(image)
|
9 |
+
plt.axis("off") # Turn off the axis labels
|
10 |
+
plt.show() # Show the image
|
create_repo.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi
|
2 |
+
|
3 |
+
# Initialize the API
|
4 |
+
api = HfApi()
|
5 |
+
|
6 |
+
# Create a new dataset repository
|
7 |
+
repo_url = api.create_repo(repo_id="amaye15/object-segmentation", repo_type="dataset")
|
8 |
+
|
9 |
+
print(f"Dataset repository created: {repo_url}")
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
gradio
|
2 |
gradio-image-prompter
|
|
|
3 |
Pillow
|
4 |
opencv-python
|
5 |
git+https://github.com/facebookresearch/segment-anything-2.git
|
|
|
1 |
gradio
|
2 |
gradio-image-prompter
|
3 |
+
huggingface-hub
|
4 |
Pillow
|
5 |
opencv-python
|
6 |
git+https://github.com/facebookresearch/segment-anything-2.git
|