Spaces:
Running
Running
Thibault Goehringer
commited on
Commit
·
41f047d
1
Parent(s):
38a946a
Update classes
Browse files
README.md
CHANGED
@@ -7,83 +7,85 @@ sdk: static
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
-
<
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
<div
|
21 |
-
class="w-full h-40 object-cover mb-2 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
|
22 |
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
<img
|
24 |
alt=""
|
25 |
-
src="/front/assets/promo/
|
26 |
-
class="w-40"
|
27 |
/>
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
alt=""
|
34 |
-
src="/front/assets/promo/amazon_walkthrough_thumbnail.png"
|
35 |
-
class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
|
36 |
-
/>
|
37 |
-
<div class="underline">Video Walkthrough with Philipp Schmid</div>
|
38 |
-
</a>
|
39 |
-
<a
|
40 |
-
href="https://huggingface.co/docs/sagemaker"
|
41 |
-
class="block overflow-hidden group"
|
42 |
-
>
|
43 |
-
<div
|
44 |
-
class="w-full h-40 object-cover mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start"
|
45 |
>
|
46 |
-
<
|
47 |
-
|
48 |
-
src="/front/assets/promo/amazon_documentation.png"
|
49 |
-
class="w-44 p-4"
|
50 |
-
/>
|
51 |
-
</div>
|
52 |
-
<div class="underline">Documentation: Hugging Face in SageMaker</div>
|
53 |
-
</a>
|
54 |
-
<div class="lg:col-span-3">
|
55 |
-
<p class="mb-2">
|
56 |
-
To train Hugging Face models in Amazon SageMaker, you can use the
|
57 |
-
Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
|
58 |
-
support in the SageMaker Python SDK.
|
59 |
-
</p>
|
60 |
-
<p class="mb-2">
|
61 |
-
The DLCs are fully integrated with the SageMaker distributed training
|
62 |
-
libraries to train models more quickly using the latest generation of
|
63 |
-
accelerated computing instances available on Amazon EC2. With the
|
64 |
-
SageMaker Python SDK, you can start training with just a single line of
|
65 |
-
code, enabling your teams to move from idea to production more quickly.
|
66 |
-
</p>
|
67 |
-
<p class="mb-2">
|
68 |
-
To deploy Hugging Face models in Amazon SageMaker, you can use the
|
69 |
-
Hugging Face Deep Learning Containers with the new Hugging Face
|
70 |
-
Inference Toolkit.
|
71 |
-
</p>
|
72 |
-
<p class="mb-2">
|
73 |
-
With the new Hugging Face Inference DLCs, deploy your trained models for
|
74 |
-
inference with just one more line of code, or select any of the 10,000+
|
75 |
-
models publicly available on the 🤗 Hub, and deploy them with Amazon
|
76 |
-
SageMaker, to easily create production-ready endpoints that scale
|
77 |
-
seamlessly, with built-in monitoring and enterprise-level security.
|
78 |
-
</p>
|
79 |
-
<p>
|
80 |
-
More information: <a
|
81 |
-
href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
|
82 |
-
class="underline">AWS blog post</a
|
83 |
-
>,
|
84 |
-
<a
|
85 |
-
href="https://discuss.huggingface.co/c/sagemaker/17"
|
86 |
-
class="underline">Community Forum</a
|
87 |
>
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
</div>
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
+
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
|
11 |
+
<p class="lg:col-span-3">
|
12 |
+
Hugging Face is working with Amazon Web Services to make it easier than
|
13 |
+
ever for startups and enterprises to <strong
|
14 |
+
>train and deploy Hugging Face models in Amazon SageMaker</strong
|
15 |
+
>.
|
16 |
+
</p>
|
17 |
+
<a
|
18 |
+
href="https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"
|
19 |
+
class="block overflow-hidden group"
|
|
|
|
|
20 |
>
|
21 |
+
<div
|
22 |
+
class="w-full h-40 object-cover mb-2 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
|
23 |
+
>
|
24 |
+
<img
|
25 |
+
alt=""
|
26 |
+
src="/front/assets/promo/amazon_sagemaker_x_huggingface.png"
|
27 |
+
class="w-40"
|
28 |
+
/>
|
29 |
+
</div>
|
30 |
+
<div class="underline">Read announcement blog post</div>
|
31 |
+
</a>
|
32 |
+
<a href="https://youtu.be/ok3hetb42gU" class="block overflow-hidden">
|
33 |
<img
|
34 |
alt=""
|
35 |
+
src="/front/assets/promo/amazon_walkthrough_thumbnail.png"
|
36 |
+
class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
|
37 |
/>
|
38 |
+
<div class="underline">Video Walkthrough with Philipp Schmid</div>
|
39 |
+
</a>
|
40 |
+
<a
|
41 |
+
href="https://huggingface.co/docs/sagemaker"
|
42 |
+
class="block overflow-hidden group"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
>
|
44 |
+
<div
|
45 |
+
class="w-full h-40 object-cover mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
>
|
47 |
+
<img
|
48 |
+
alt=""
|
49 |
+
src="/front/assets/promo/amazon_documentation.png"
|
50 |
+
class="w-44 p-4"
|
51 |
+
/>
|
52 |
+
</div>
|
53 |
+
<div class="underline">Documentation: Hugging Face in SageMaker</div>
|
54 |
+
</a>
|
55 |
+
<div class="lg:col-span-3">
|
56 |
+
<p class="mb-2">
|
57 |
+
To train Hugging Face models in Amazon SageMaker, you can use the
|
58 |
+
Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
|
59 |
+
support in the SageMaker Python SDK.
|
60 |
+
</p>
|
61 |
+
<p class="mb-2">
|
62 |
+
The DLCs are fully integrated with the SageMaker distributed training
|
63 |
+
libraries to train models more quickly using the latest generation of
|
64 |
+
accelerated computing instances available on Amazon EC2. With the
|
65 |
+
SageMaker Python SDK, you can start training with just a single line of
|
66 |
+
code, enabling your teams to move from idea to production more quickly.
|
67 |
+
</p>
|
68 |
+
<p class="mb-2">
|
69 |
+
To deploy Hugging Face models in Amazon SageMaker, you can use the
|
70 |
+
Hugging Face Deep Learning Containers with the new Hugging Face
|
71 |
+
Inference Toolkit.
|
72 |
+
</p>
|
73 |
+
<p class="mb-2">
|
74 |
+
With the new Hugging Face Inference DLCs, deploy your trained models for
|
75 |
+
inference with just one more line of code, or select any of the 10,000+
|
76 |
+
models publicly available on the 🤗 Hub, and deploy them with Amazon
|
77 |
+
SageMaker, to easily create production-ready endpoints that scale
|
78 |
+
seamlessly, with built-in monitoring and enterprise-level security.
|
79 |
+
</p>
|
80 |
+
<p>
|
81 |
+
More information: <a
|
82 |
+
href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
|
83 |
+
class="underline">AWS blog post</a
|
84 |
+
>,
|
85 |
+
<a
|
86 |
+
href="https://discuss.huggingface.co/c/sagemaker/17"
|
87 |
+
class="underline">Community Forum</a
|
88 |
+
>
|
89 |
+
</p>
|
90 |
+
</div>
|
91 |
</div>
|