initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from scipy.integrate import odeint
|
5 |
+
from scipy.optimize import fsolve
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Population and time settings
|
9 |
+
population_size = 100
|
10 |
+
time_points = np.linspace(0, 24, 100)
|
11 |
+
|
12 |
+
# PK parameters for Enrofloxacin and Ciprofloxacin
|
13 |
+
pk_parameters = {
|
14 |
+
'Enrofloxacin': {
|
15 |
+
'Cmax_mean': 1.35, 'Cmax_std': 0.15,
|
16 |
+
'Tmax_mean': 4.00, 'Tmax_std': 1,
|
17 |
+
'Ke_mean': 0.03, 'Ke_std': 0.003,
|
18 |
+
'F_mean': 0.7, 'F_std': 0.1,
|
19 |
+
'Vd_mean': 24.76, 'Vd_std': 3.67,
|
20 |
+
'pKa': 6.0,
|
21 |
+
'type': 'acidic'
|
22 |
+
},
|
23 |
+
'Ciprofloxacin': {
|
24 |
+
'Cmax_mean': 0.08, 'Cmax_std': 0.01,
|
25 |
+
'Tmax_mean': 3.44, 'Tmax_std': 1.01,
|
26 |
+
'Ke_mean': 0.04, 'Ke_std': 0.01,
|
27 |
+
'F_mean': 0.6, 'F_std': 0.1,
|
28 |
+
'Vd_mean': 17.46, 'Vd_std': 6.40,
|
29 |
+
'pKa': 7.7,
|
30 |
+
'type': 'acidic'
|
31 |
+
}
|
32 |
+
}
|
33 |
+
|
34 |
+
# MIC values for pathogens
|
35 |
+
MIC_values = {
|
36 |
+
'E.coli': 0.06,
|
37 |
+
'S.Enteritidis': 0.1,
|
38 |
+
'M.gallisepticum': 0.1,
|
39 |
+
'C.perfringens': 0.12
|
40 |
+
}
|
41 |
+
|
42 |
+
# Ionization calculations
|
43 |
+
def unionized_fraction_acidic(pH, pKa):
|
44 |
+
return 1 / (1 + 10 ** (pH - pKa))
|
45 |
+
|
46 |
+
def unionized_fraction_basic(pH, pKa):
|
47 |
+
return 1 / (1 + 10 ** (pKa - pH))
|
48 |
+
|
49 |
+
def calculate_unionized_concentration(concentration, pH, pKa, drug_type):
|
50 |
+
if drug_type == "acidic":
|
51 |
+
unionized_fraction = unionized_fraction_acidic(pH, pKa)
|
52 |
+
elif drug_type == "basic":
|
53 |
+
unionized_fraction = unionized_fraction_basic(pH, pKa)
|
54 |
+
else:
|
55 |
+
raise ValueError("Invalid drug type. Must be 'acidic' or 'basic'.")
|
56 |
+
return concentration * unionized_fraction
|
57 |
+
|
58 |
+
# Simulate drug concentration
|
59 |
+
def pk_model(C, t, ka, ke, Vd, F, dose):
|
60 |
+
dCdt = (F * dose * ka / Vd) * np.exp(-ka * t) - (ke * C[0])
|
61 |
+
return dCdt
|
62 |
+
|
63 |
+
def solve_for_ka(Tmax_target, ke):
|
64 |
+
ka_guess = max(ke * 2, 0.01)
|
65 |
+
def equation(ka): return (np.log(ka) - np.log(ke)) / (ka - ke) - Tmax_target
|
66 |
+
ka_solution = fsolve(equation, ka_guess)
|
67 |
+
return ka_solution[0] if ka_solution[0] > 0 else 0.05
|
68 |
+
|
69 |
+
def simulate_concentration(dose, ke, Vd, F, Cmax_target, drug_type, pH, pKa):
|
70 |
+
ka = solve_for_ka(pk_parameters['Enrofloxacin']['Tmax_mean'], ke)
|
71 |
+
concentration = odeint(pk_model, [0], time_points, args=(ka, ke, Vd, F, dose))[:, 0]
|
72 |
+
if np.max(concentration) > 0:
|
73 |
+
concentration *= (Cmax_target / np.max(concentration))
|
74 |
+
return calculate_unionized_concentration(concentration, pH, pKa, drug_type)
|
75 |
+
|
76 |
+
def simulate_multiple_doses(pk_params, doses, pH):
|
77 |
+
all_data = []
|
78 |
+
for molecule, params in pk_params.items():
|
79 |
+
for i in range(population_size):
|
80 |
+
F = np.random.normal(params['F_mean'], params['F_std'])
|
81 |
+
ke = np.random.normal(params['Ke_mean'], params['Ke_std'])
|
82 |
+
Vd = np.random.normal(params['Vd_mean'], params['Vd_std'])
|
83 |
+
Cmax_target = np.random.normal(params['Cmax_mean'], params['Cmax_std'])
|
84 |
+
pKa = params['pKa']
|
85 |
+
ref_conc = simulate_concentration(10, ke, Vd, F, Cmax_target, params['type'], pH, pKa)
|
86 |
+
for dose in doses:
|
87 |
+
scaled_conc = ref_conc * (dose / 10)
|
88 |
+
all_data.extend([{
|
89 |
+
'Individual': i + 1,
|
90 |
+
'Molecule': molecule,
|
91 |
+
'Dose': dose,
|
92 |
+
'Time': t,
|
93 |
+
'Concentration': conc
|
94 |
+
} for t, conc in zip(time_points, scaled_conc)])
|
95 |
+
return pd.DataFrame(all_data)
|
96 |
+
|
97 |
+
def calculate_pkpd_metrics(concentrations, time_points, MIC):
|
98 |
+
AUC = np.trapz(concentrations, time_points)
|
99 |
+
Cmax = np.max(concentrations)
|
100 |
+
T_above_MIC = time_points[concentrations > MIC]
|
101 |
+
T_above_MIC_duration = (T_above_MIC[-1] - T_above_MIC[0]) if len(T_above_MIC) > 0 else 0
|
102 |
+
AUIC = np.trapz(concentrations[concentrations > MIC] - MIC, time_points[concentrations > MIC]) if np.any(concentrations > MIC) else 0
|
103 |
+
return AUC, Cmax, T_above_MIC_duration, AUIC
|
104 |
+
|
105 |
+
def plot_pkpd_and_ionization(pk_params, df, MIC, doses, pH_range):
|
106 |
+
fig, axes = plt.subplots(len(pk_params), len(doses) + 1, figsize=(20, len(pk_params) * 5))
|
107 |
+
for row, (molecule, params) in enumerate(pk_params.items()):
|
108 |
+
pKa = params['pKa']
|
109 |
+
for col, dose in enumerate(doses):
|
110 |
+
group = df[(df['Molecule'] == molecule) & (df['Dose'] == dose)]
|
111 |
+
mean_conc = group.groupby('Time')['Concentration'].mean().values
|
112 |
+
ax = axes[row, col]
|
113 |
+
ax.plot(time_points[:len(mean_conc)], mean_conc, label=f"{molecule}, Dose: {dose} mg/kg")
|
114 |
+
ax.axhline(MIC, color='red', linestyle='--', label=f'MIC = {MIC:.2f}')
|
115 |
+
|
116 |
+
# Calculate PKPD metrics
|
117 |
+
AUC, Cmax, T_above_MIC, AUIC = calculate_pkpd_metrics(mean_conc, time_points[:len(mean_conc)], MIC)
|
118 |
+
|
119 |
+
# Fill AUIC area
|
120 |
+
ax.fill_between(time_points[:len(mean_conc)], MIC, mean_conc, where=(mean_conc > MIC), color='green', alpha=0.3, label="AUIC")
|
121 |
+
ax.text(0.6 * time_points[-1], 0.8 * np.max(mean_conc),
|
122 |
+
f"AUC: {AUC:.2f}\nCmax: {Cmax:.2f}\nT>MIC: {T_above_MIC:.2f} h\nAUIC: {AUIC:.2f}",
|
123 |
+
fontsize=9, bbox=dict(facecolor='white', alpha=0.8))
|
124 |
+
|
125 |
+
ax.set_title(f"{molecule} - Dose {dose} mg/kg")
|
126 |
+
ax.set_xlabel('Time (h)')
|
127 |
+
ax.set_ylabel('Concentration (mg/L)')
|
128 |
+
ax.legend()
|
129 |
+
ax = axes[row, -1]
|
130 |
+
unionized = [unionized_fraction_acidic(pH, pKa) for pH in pH_range]
|
131 |
+
ax.plot(pH_range, unionized, label=f"Ionization Profile ({molecule})")
|
132 |
+
ax.set_title(f"Ionization Profile: {molecule}")
|
133 |
+
ax.set_xlabel('pH')
|
134 |
+
ax.set_ylabel('Unionized Fraction')
|
135 |
+
ax.legend()
|
136 |
+
plt.tight_layout()
|
137 |
+
return fig
|
138 |
+
|
139 |
+
# Gradio Function
|
140 |
+
def gradio_function(pH_input, pathogen, dose_input):
|
141 |
+
if pathogen not in MIC_values:
|
142 |
+
raise ValueError("Invalid pathogen.")
|
143 |
+
MIC = MIC_values[pathogen]
|
144 |
+
doses = [int(d) for d in dose_input.split(',')]
|
145 |
+
pH_range = np.linspace(0, 14, 100)
|
146 |
+
df = simulate_multiple_doses(pk_parameters, doses, pH_input)
|
147 |
+
fig = plot_pkpd_and_ionization(pk_parameters, df, MIC, doses, pH_range)
|
148 |
+
return fig
|
149 |
+
|
150 |
+
|
151 |
+
# Gradio Interface
|
152 |
+
interface = gr.Interface(
|
153 |
+
fn=gradio_function,
|
154 |
+
inputs=[
|
155 |
+
gr.Slider(0, 14, step=0.1, label="Water pH Value"),
|
156 |
+
gr.Dropdown(list(MIC_values.keys()), label="Pathogen"),
|
157 |
+
gr.Textbox(value="5,15,20", label="Doses (mg/kg, comma-separated)")
|
158 |
+
],
|
159 |
+
outputs=gr.Plot(),
|
160 |
+
title="Qomics All Rights Reserved (C)",
|
161 |
+
live=True
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
interface.launch()
|