NewsRecommender / app.py
amirhosseinkarami's picture
Update app.py
ba0b88d
raw
history blame contribute delete
858 Bytes
import gradio as gr
from Recommender import Recommender
from Preprocess import ModelUtils, Preprocess
import numpy as np
import pandas as pd
data_path = "result.csv"
model_path = "model_root"
data = pd.read_csv(data_path)
modelu = ModelUtils(model_path)
modelu.make_dirs()
modelu.download_model()
p = Preprocess(model_path)
data = pd.read_csv(data_path)
rec = Recommender (1, 2, 3, 5, 4)
k = 3
table = [tuple(row) for row in data.to_numpy()]
def recom (input) :
# id = input.split("-")[-1]
indices, scores, title_scores = rec.recommend_k(table, k, input)
out = list(data[indices]['title'])
return "\n".join(out)
demo = gr.Interface(fn=recom,
inputs=[gr.Dropdown(choices = list(data['title'][:20]), multiselect=False, label="Titles")],
outputs=gr.Textbox(label="Titles of recommended items"))
demo.launch()