Spaces:
Runtime error
Runtime error
File size: 6,622 Bytes
dce1ab4 f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b f8b1a1a f3af09b 53da582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import time
import numpy as np
import torch
from tqdm import tqdm
import torch.nn as nn
from collections import OrderedDict
import json
from models.tta.autoencoder.autoencoder import AutoencoderKL
from models.tta.ldm.inference_utils.vocoder import Generator
from models.tta.ldm.audioldm import AudioLDM
from transformers import T5EncoderModel, AutoTokenizer
from diffusers import PNDMScheduler
import matplotlib.pyplot as plt
from scipy.io.wavfile import write
from utils.util import load_config
import gradio as gr
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def build_autoencoderkl(cfg, device):
autoencoderkl = AutoencoderKL(cfg.model.autoencoderkl)
autoencoder_path = cfg.model.autoencoder_path
checkpoint = torch.load(autoencoder_path, map_location="cpu")
autoencoderkl.load_state_dict(checkpoint["model"])
autoencoderkl = autoencoderkl.to(device=device)
autoencoderkl.requires_grad_(requires_grad=False)
autoencoderkl.eval()
return autoencoderkl
def build_textencoder(device):
try:
tokenizer = AutoTokenizer.from_pretrained("t5-base", model_max_length=512)
text_encoder = T5EncoderModel.from_pretrained("t5-base")
except:
tokenizer = AutoTokenizer.from_pretrained("ckpts/tta/tokenizer")
text_encoder = T5EncoderModel.from_pretrained("ckpts/tta/text_encoder")
text_encoder = text_encoder.to(device=device)
text_encoder.requires_grad_(requires_grad=False)
text_encoder.eval()
return tokenizer, text_encoder
def build_vocoder(device):
config_file = os.path.join("ckpts/tta/hifigan_checkpoints/config.json")
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
vocoder = Generator(h).to(device)
checkpoint_dict = torch.load(
"ckpts/tta/hifigan_checkpoints/g_01250000", map_location=device
)
vocoder.load_state_dict(checkpoint_dict["generator"])
return vocoder
def build_model(cfg):
model = AudioLDM(cfg.model.audioldm)
return model
def get_text_embedding(text, tokenizer, text_encoder, device):
prompt = [text]
text_input = tokenizer(
prompt,
max_length=tokenizer.model_max_length,
truncation=True,
padding="do_not_pad",
return_tensors="pt",
)
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * 1, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def tta_inference(
text,
guidance_scale=4,
diffusion_steps=100,
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.environ["WORK_DIR"] = "./"
cfg = load_config("egs/tta/audioldm/exp_config.json")
autoencoderkl = build_autoencoderkl(cfg, device)
tokenizer, text_encoder = build_textencoder(device)
vocoder = build_vocoder(device)
model = build_model(cfg)
checkpoint_path = "ckpts/tta/audioldm_debug_latent_size_4_5_39/checkpoints/step-0570000_loss-0.2521.pt"
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model"])
model = model.to(device)
text_embeddings = get_text_embedding(text, tokenizer, text_encoder, device)
num_steps = diffusion_steps
noise_scheduler = PNDMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
skip_prk_steps=True,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
)
noise_scheduler.set_timesteps(num_steps)
latents = torch.randn(
(
1,
cfg.model.autoencoderkl.z_channels,
80 // (2 ** (len(cfg.model.autoencoderkl.ch_mult) - 1)),
624 // (2 ** (len(cfg.model.autoencoderkl.ch_mult) - 1)),
)
).to(device)
model.eval()
for t in tqdm(noise_scheduler.timesteps):
t = t.to(device)
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(
latent_model_input, timestep=t
)
# print(latent_model_input.shape)
# predict the noise residual
with torch.no_grad():
noise_pred = model(
latent_model_input, torch.cat([t.unsqueeze(0)] * 2), text_embeddings
)
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
print(guidance_scale)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
# print(latents.shape)
latents_out = latents
with torch.no_grad():
mel_out = autoencoderkl.decode(latents_out)
melspec = mel_out[0, 0].cpu().detach().numpy()
vocoder.eval()
vocoder.remove_weight_norm()
with torch.no_grad():
melspec = np.expand_dims(melspec, 0)
melspec = torch.FloatTensor(melspec).to(device)
y = vocoder(melspec)
audio = y.squeeze()
audio = audio * 32768.0
audio = audio.cpu().numpy().astype("int16")
os.makedirs("result", exist_ok=True)
write(os.path.join("result", text + ".wav"), 16000, audio)
return os.path.join("result", text + ".wav")
demo_inputs = [
gr.Textbox(
value="birds singing and a man whistling",
label="Text prompt you want to generate",
type="text",
),
gr.Slider(
1,
10,
value=4,
step=1,
label="Classifier free guidance",
),
gr.Slider(
50,
1000,
value=100,
step=1,
label="Diffusion Inference Steps",
info="As the step number increases, the synthesis quality will be better while the inference speed will be lower",
),
]
demo_outputs = gr.Audio(label="")
demo = gr.Interface(
fn=tta_inference,
inputs=demo_inputs,
outputs=demo_outputs,
title="Amphion Text to Audio",
)
if __name__ == "__main__":
demo.launch()
|