File size: 8,205 Bytes
5548515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import torch
import torch.nn as nn
from torchaudio.models import Conformer
from models.svc.transformer.transformer import PositionalEncoding

from utils.f0 import f0_to_coarse


class ContentEncoder(nn.Module):
    def __init__(self, cfg, input_dim, output_dim):
        super().__init__()
        self.cfg = cfg

        assert input_dim != 0
        self.nn = nn.Linear(input_dim, output_dim)

        # Introduce conformer or not
        if (
            "use_conformer_for_content_features" in cfg
            and cfg.use_conformer_for_content_features
        ):
            self.pos_encoder = PositionalEncoding(input_dim)
            self.conformer = Conformer(
                input_dim=input_dim,
                num_heads=2,
                ffn_dim=256,
                num_layers=6,
                depthwise_conv_kernel_size=3,
            )
        else:
            self.conformer = None

    def forward(self, x, length=None):
        # x: (N, seq_len, input_dim) -> (N, seq_len, output_dim)
        if self.conformer:
            x = self.pos_encoder(x)
            x, _ = self.conformer(x, length)
        return self.nn(x)


class MelodyEncoder(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg

        self.input_dim = self.cfg.input_melody_dim
        self.output_dim = self.cfg.output_melody_dim
        self.n_bins = self.cfg.n_bins_melody
        self.pitch_min = self.cfg.pitch_min
        self.pitch_max = self.cfg.pitch_max

        if self.input_dim != 0:
            if self.n_bins == 0:
                # Not use quantization
                self.nn = nn.Linear(self.input_dim, self.output_dim)
            else:
                self.f0_min = cfg.f0_min
                self.f0_max = cfg.f0_max

                self.nn = nn.Embedding(
                    num_embeddings=self.n_bins,
                    embedding_dim=self.output_dim,
                    padding_idx=None,
                )
                self.uv_embedding = nn.Embedding(2, self.output_dim)
                # self.conformer = Conformer(
                #     input_dim=self.output_dim,
                #     num_heads=4,
                #     ffn_dim=128,
                #     num_layers=4,
                #     depthwise_conv_kernel_size=3,
                # )

    def forward(self, x, uv=None, length=None):
        # x: (N, frame_len)
        # print(x.shape)
        if self.n_bins == 0:
            x = x.unsqueeze(-1)
        else:
            x = f0_to_coarse(x, self.n_bins, self.f0_min, self.f0_max)
            x = self.nn(x)
            if uv is not None:
                uv = self.uv_embedding(uv)
                x = x + uv
            # x, _ = self.conformer(x, length)
        return x


class LoudnessEncoder(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg

        self.input_dim = self.cfg.input_loudness_dim
        self.output_dim = self.cfg.output_loudness_dim
        self.n_bins = self.cfg.n_bins_loudness

        if self.input_dim != 0:
            if self.n_bins == 0:
                # Not use quantization
                self.nn = nn.Linear(self.input_dim, self.output_dim)
            else:
                # TODO: set trivially now
                self.loudness_min = 1e-30
                self.loudness_max = 1.5

                if cfg.use_log_loudness:
                    self.energy_bins = nn.Parameter(
                        torch.exp(
                            torch.linspace(
                                np.log(self.loudness_min),
                                np.log(self.loudness_max),
                                self.n_bins - 1,
                            )
                        ),
                        requires_grad=False,
                    )

                self.nn = nn.Embedding(
                    num_embeddings=self.n_bins,
                    embedding_dim=self.output_dim,
                    padding_idx=None,
                )

    def forward(self, x):
        # x: (N, frame_len)
        if self.n_bins == 0:
            x = x.unsqueeze(-1)
        else:
            x = torch.bucketize(x, self.energy_bins)
        return self.nn(x)


class SingerEncoder(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg

        self.input_dim = 1
        self.output_dim = self.cfg.output_singer_dim

        self.nn = nn.Embedding(
            num_embeddings=cfg.singer_table_size,
            embedding_dim=self.output_dim,
            padding_idx=None,
        )

    def forward(self, x):
        # x: (N, 1) -> (N, 1, output_dim)
        return self.nn(x)


class ConditionEncoder(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg

        self.merge_mode = cfg.merge_mode

        if cfg.use_whisper:
            self.whisper_encoder = ContentEncoder(
                self.cfg, self.cfg.whisper_dim, self.cfg.content_encoder_dim
            )

        if cfg.use_contentvec:
            self.contentvec_encoder = ContentEncoder(
                self.cfg, self.cfg.contentvec_dim, self.cfg.content_encoder_dim
            )

        if cfg.use_mert:
            self.mert_encoder = ContentEncoder(
                self.cfg, self.cfg.mert_dim, self.cfg.content_encoder_dim
            )

        if cfg.use_wenet:
            self.wenet_encoder = ContentEncoder(
                self.cfg, self.cfg.wenet_dim, self.cfg.content_encoder_dim
            )

        self.melody_encoder = MelodyEncoder(self.cfg)
        self.loudness_encoder = LoudnessEncoder(self.cfg)
        if cfg.use_spkid:
            self.singer_encoder = SingerEncoder(self.cfg)

    def forward(self, x):
        outputs = []

        if "frame_pitch" in x.keys():
            if "frame_uv" not in x.keys():
                x["frame_uv"] = None
            pitch_enc_out = self.melody_encoder(
                x["frame_pitch"], uv=x["frame_uv"], length=x["target_len"]
            )
            outputs.append(pitch_enc_out)

        if "frame_energy" in x.keys():
            loudness_enc_out = self.loudness_encoder(x["frame_energy"])
            outputs.append(loudness_enc_out)

        if "whisper_feat" in x.keys():
            # whisper_feat: [b, T, 1024]
            whiser_enc_out = self.whisper_encoder(
                x["whisper_feat"], length=x["target_len"]
            )
            outputs.append(whiser_enc_out)
            seq_len = whiser_enc_out.shape[1]

        if "contentvec_feat" in x.keys():
            contentvec_enc_out = self.contentvec_encoder(
                x["contentvec_feat"], length=x["target_len"]
            )
            outputs.append(contentvec_enc_out)
            seq_len = contentvec_enc_out.shape[1]

        if "mert_feat" in x.keys():
            mert_enc_out = self.mert_encoder(x["mert_feat"], length=x["target_len"])
            outputs.append(mert_enc_out)
            seq_len = mert_enc_out.shape[1]

        if "wenet_feat" in x.keys():
            wenet_enc_out = self.wenet_encoder(x["wenet_feat"], length=x["target_len"])
            outputs.append(wenet_enc_out)
            seq_len = wenet_enc_out.shape[1]

        if "spk_id" in x.keys():
            speaker_enc_out = self.singer_encoder(x["spk_id"])  # [b, 1, 384]
            assert (
                "whisper_feat" in x.keys()
                or "contentvec_feat" in x.keys()
                or "mert_feat" in x.keys()
                or "wenet_feat" in x.keys()
            )
            singer_info = speaker_enc_out.expand(-1, seq_len, -1)
            outputs.append(singer_info)

        encoder_output = None
        if self.merge_mode == "concat":
            encoder_output = torch.cat(outputs, dim=-1)
        if self.merge_mode == "add":
            # (#modules, N, seq_len, output_dim)
            outputs = torch.cat([out[None, :, :, :] for out in outputs], dim=0)
            # (N, seq_len, output_dim)
            encoder_output = torch.sum(outputs, dim=0)

        return encoder_output