File size: 5,084 Bytes
5548515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


import copy
import numbers
from typing import Any, List, Tuple, Union

import torch
from torch import Tensor, nn
from torch.nn import functional as F

from modules.general.scaling import ActivationBalancer
from modules.general.scaling import BasicNorm as _BasicNorm


_shape_t = Union[int, List[int], torch.Size]


class LayerNorm(nn.Module):
    __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
    normalized_shape: Tuple[int, ...]
    eps: float
    elementwise_affine: bool

    def __init__(
        self,
        normalized_shape: _shape_t,
        eps: float = 1e-5,
        elementwise_affine: bool = True,
        device=None,
        dtype=None,
    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        self.normalized_shape = tuple(normalized_shape)
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        if self.elementwise_affine:
            self.weight = nn.Parameter(
                torch.empty(self.normalized_shape, **factory_kwargs)
            )
            self.bias = nn.Parameter(
                torch.empty(self.normalized_shape, **factory_kwargs)
            )
        else:
            self.register_parameter("weight", None)
            self.register_parameter("bias", None)

        self.reset_parameters()

    def reset_parameters(self) -> None:
        if self.elementwise_affine:
            nn.init.ones_(self.weight)
            nn.init.zeros_(self.bias)

    def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
        if isinstance(input, tuple):
            input, embedding = input
            output = F.layer_norm(
                input, self.normalized_shape, self.weight, self.bias, self.eps
            )
            return output, embedding

        assert embedding is None
        return F.layer_norm(
            input, self.normalized_shape, self.weight, self.bias, self.eps
        )

    def extra_repr(self) -> str:
        return (
            "{normalized_shape}, eps={eps}, "
            "elementwise_affine={elementwise_affine}".format(**self.__dict__)
        )


class AdaptiveLayerNorm(nn.Module):
    r"""Adaptive Layer Normalization"""

    def __init__(self, d_model, norm) -> None:
        super(AdaptiveLayerNorm, self).__init__()
        self.project_layer = nn.Linear(d_model, 2 * d_model)
        self.norm = norm
        self.d_model = d_model
        self.eps = self.norm.eps

    def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
        if isinstance(input, tuple):
            input, embedding = input
            weight, bias = torch.split(
                self.project_layer(embedding),
                split_size_or_sections=self.d_model,
                dim=-1,
            )
            return (weight * self.norm(input) + bias, embedding)

        weight, bias = torch.split(
            self.project_layer(embedding),
            split_size_or_sections=self.d_model,
            dim=-1,
        )
        return weight * self.norm(input) + bias


class BasicNorm(_BasicNorm):
    def __init__(
        self,
        d_model: int,
        eps: float = 1e-5,
        device=None,
        dtype=None,
    ):
        super(BasicNorm, self).__init__(d_model, eps=eps)

    def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
        if isinstance(input, tuple):
            input, embedding = input
            return (
                super(BasicNorm, self).forward(input),
                embedding,
            )

        assert embedding is None
        return super(BasicNorm, self).forward(input)


class BalancedBasicNorm(nn.Module):
    def __init__(
        self,
        d_model: int,
        eps: float = 1e-5,
        device=None,
        dtype=None,
    ):
        super(BalancedBasicNorm, self).__init__()
        self.balancer = ActivationBalancer(
            d_model,
            channel_dim=-1,
            min_positive=0.45,
            max_positive=0.55,
            max_abs=6.0,
        )
        self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype)

    def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
        if isinstance(input, tuple):
            input, embedding = input
            return self.norm((self.balancer(input), embedding))

        assert embedding is None
        return self.norm(self.balancer(input))


class IdentityNorm(nn.Module):
    def __init__(
        self,
        d_model: int,
        eps: float = 1e-5,
        device=None,
        dtype=None,
    ) -> None:
        super(IdentityNorm, self).__init__()

    def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
        if isinstance(input, tuple):
            return input

        assert embedding is None
        return input