Spaces:
Running
on
Zero
Running
on
Zero
andrewkatumba
commited on
Commit
·
42b4893
1
Parent(s):
fec6b29
Remove owl
Browse files- app.py +8 -26
- bee.jpg +0 -3
- cats.png +0 -0
- warthog.jpg +0 -0
- zebra.jpg +0 -0
app.py
CHANGED
@@ -5,9 +5,6 @@ import gradio as gr
|
|
5 |
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
|
8 |
-
owl_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to("cuda")
|
9 |
-
owl_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
|
10 |
-
|
11 |
dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
|
12 |
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to("cuda")
|
13 |
|
@@ -31,16 +28,6 @@ def infer(img, text_queries, score_threshold, model):
|
|
31 |
results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids,
|
32 |
box_threshold=score_threshold,
|
33 |
target_sizes=target_sizes)
|
34 |
-
elif model == "owl":
|
35 |
-
size = max(img.shape[:2])
|
36 |
-
target_sizes = torch.Tensor([[size, size]])
|
37 |
-
inputs = owl_processor(text=text_queries, images=img, return_tensors="pt").to(device)
|
38 |
-
|
39 |
-
with torch.no_grad():
|
40 |
-
outputs = owl_model(**inputs)
|
41 |
-
outputs.logits = outputs.logits.cpu()
|
42 |
-
outputs.pred_boxes = outputs.pred_boxes.cpu()
|
43 |
-
results = owl_processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
|
44 |
|
45 |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
46 |
result_labels = []
|
@@ -49,34 +36,29 @@ def infer(img, text_queries, score_threshold, model):
|
|
49 |
box = [int(i) for i in box.tolist()]
|
50 |
if score < score_threshold:
|
51 |
continue
|
52 |
-
|
53 |
-
|
54 |
-
result_labels.append((box, label))
|
55 |
-
elif model == "dino":
|
56 |
if label != "":
|
57 |
result_labels.append((box, label))
|
58 |
return result_labels
|
59 |
|
60 |
-
def query_image(img, text_queries,
|
61 |
text_queries = text_queries
|
62 |
text_queries = text_queries.split(",")
|
63 |
-
owl_output = infer(img, text_queries, owl_threshold, "owl")
|
64 |
dino_output = infer(img, text_queries, dino_threshold, "dino")
|
65 |
|
66 |
|
67 |
-
return (img,
|
68 |
|
69 |
|
70 |
-
owl_threshold = gr.Slider(0, 1, value=0.16, label="OWL Threshold")
|
71 |
dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold")
|
72 |
-
owl_output = gr.AnnotatedImage(label="OWL Output")
|
73 |
dino_output = gr.AnnotatedImage(label="Grounding DINO Output")
|
74 |
demo = gr.Interface(
|
75 |
query_image,
|
76 |
-
inputs=[gr.Image(label="Input Image"), gr.Textbox(label="Candidate Labels"),
|
77 |
-
outputs=[
|
78 |
title="OWLv2 ⚔ Grounding DINO",
|
79 |
-
description="
|
80 |
-
examples=[["./
|
81 |
)
|
82 |
demo.launch(debug=True)
|
|
|
5 |
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
|
|
|
|
|
|
|
8 |
dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
|
9 |
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to("cuda")
|
10 |
|
|
|
28 |
results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids,
|
29 |
box_threshold=score_threshold,
|
30 |
target_sizes=target_sizes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
33 |
result_labels = []
|
|
|
36 |
box = [int(i) for i in box.tolist()]
|
37 |
if score < score_threshold:
|
38 |
continue
|
39 |
+
|
40 |
+
if model == "dino":
|
|
|
|
|
41 |
if label != "":
|
42 |
result_labels.append((box, label))
|
43 |
return result_labels
|
44 |
|
45 |
+
def query_image(img, text_queries, dino_threshold):
|
46 |
text_queries = text_queries
|
47 |
text_queries = text_queries.split(",")
|
|
|
48 |
dino_output = infer(img, text_queries, dino_threshold, "dino")
|
49 |
|
50 |
|
51 |
+
return (img, dino_output)
|
52 |
|
53 |
|
|
|
54 |
dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold")
|
|
|
55 |
dino_output = gr.AnnotatedImage(label="Grounding DINO Output")
|
56 |
demo = gr.Interface(
|
57 |
query_image,
|
58 |
+
inputs=[gr.Image(label="Input Image"), gr.Textbox(label="Candidate Labels"), dino_threshold],
|
59 |
+
outputs=[ dino_output],
|
60 |
title="OWLv2 ⚔ Grounding DINO",
|
61 |
+
description="Evaluate state-of-the-art [Grounding DINO](https://huggingface.co/IDEA-Research/grounding-dino-base) zero-shot object detection models. Simply enter an image and the objects you want to find with comma, or try one of the examples. Play with the threshold to filter out low confidence predictions in the model.",
|
62 |
+
examples=[["./warthog.jpg", "zebra, warthog", 0.16], ["./zebra.png", "zebra, lion", 0.16]]
|
63 |
)
|
64 |
demo.launch(debug=True)
|
bee.jpg
DELETED
Git LFS Details
|
cats.png
DELETED
Binary file (678 kB)
|
|
warthog.jpg
ADDED
zebra.jpg
ADDED