anilguven commited on
Commit
ff11818
·
verified ·
1 Parent(s): 1b6dcb4

Rename Movie_app.py to app.py

Browse files
Files changed (2) hide show
  1. Movie_app.py +0 -68
  2. app.py +15 -0
Movie_app.py DELETED
@@ -1,68 +0,0 @@
1
- import streamlit as st
2
-
3
- st.set_page_config(page_title="Turkish Review Analysis - via AG", page_icon='📖')
4
- st.header("📖Movie Review Analysis - TR")
5
-
6
- with st.sidebar:
7
- hf_key = st.text_input("HuggingFace Access Key", key="hf_key", type="password")
8
-
9
- MODEL_MOVIE = {
10
- "albert": "anilguven/albert_tr_turkish_movie_reviews", # Add the emoji for the Meta-Llama model
11
- "distilbert": "anilguven/distilbert_tr_turkish_movie_reviews",
12
- "bert": "anilguven/bert_tr_turkish_movie_reviews",
13
- "electra": "anilguven/electra_tr_turkish_movie_reviews",
14
- }
15
-
16
- MODEL_MOVIES = ["albert","distilbert","bert","electra"]
17
-
18
- # Use a pipeline as a high-level helper
19
- from transformers import pipeline
20
- # Create a mapping from formatted model names to their original identifiers
21
- def format_model_name(model_key):
22
- name_parts = model_key
23
- formatted_name = ''.join(name_parts) # Join them into a single string with title case
24
- return formatted_name
25
-
26
- formatted_names_to_identifiers = {
27
- format_model_name(key): key for key in MODEL_MOVIE.keys()
28
- }
29
-
30
- with st.expander("About this app"):
31
- st.write(f"""
32
- 1-Choose your model for movie review analysis (negative or positive).\n
33
- 2-Enter your sample text.\n
34
- 3-And model predict your text's result.
35
- """)
36
-
37
- # Debug to ensure names are formatted correctly
38
- #st.write("Formatted Model Names to Identifiers:", formatted_names_to_identifiers)
39
-
40
- model_name: str = st.selectbox("Model", options=MODEL_MOVIES)
41
- selected_model = MODEL_MOVIE[model_name]
42
-
43
- if not hf_key:
44
- st.info("Please add your HuggingFace Access Key to continue.")
45
- st.stop()
46
-
47
- access_token = hf_key
48
- pipe = pipeline("text-classification", model=selected_model, token=access_token)
49
-
50
- #from transformers import AutoTokenizer, AutoModelForSequenceClassification
51
- #tokenizer = AutoTokenizer.from_pretrained(selected_model)
52
- #pipe = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=selected_model)
53
-
54
- comment = st.text_input("Enter your text for analysis")#User input
55
-
56
- st.text('')
57
- if st.button("Submit for Analysis"):#User Review Button
58
- if not hf_key:
59
- st.info("Please add your HuggingFace Access Key to continue.")
60
- st.stop()
61
- else:
62
- result = pipe(comment)[0]
63
- label=''
64
- if result["label"] == "LABEL_0": label = "Negative"
65
- else: label = "Positive"
66
- st.text(label + " comment with " + str(result["score"]) + " accuracy")
67
-
68
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(page_title="Turkish Review Analysis - via AG", page_icon='📖')
4
+ st.header("📖Positive-Negative Review Analysis")
5
+
6
+
7
+ st.write(f"""
8
+ Do you want to review analysis for Turkish language? \n
9
+ This space analyzes your movie or hotel reviews as positive-negative. \n
10
+ You also upload your own file and obtain file analysis results, then download it. \n
11
+ I wait to try your data.
12
+ """)
13
+
14
+
15
+