Spaces:
Sleeping
Sleeping
anisrashidov
commited on
Upload 3 files
Browse files- app.py +301 -59
- crawler.py +98 -0
- requirements.txt +19 -1
app.py
CHANGED
@@ -1,64 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from fastapi import FastAPI
|
2 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from openai import OpenAI
|
4 |
+
from google import genai
|
5 |
+
from crawler import extract_data
|
6 |
+
import time
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
import gradio as gr
|
10 |
+
# import multiprocessing
|
11 |
+
from together import Together
|
12 |
+
|
13 |
+
load_dotenv("../.env")
|
14 |
+
print("Environment variables:", os.environ)
|
15 |
+
|
16 |
+
|
17 |
+
together_client = Together(
|
18 |
+
api_key=os.getenv("TOGETHER_API_KEY"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
|
21 |
+
gemini_client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
22 |
+
genai_model = "gemini-2.0-flash-exp"
|
23 |
+
|
24 |
+
perplexity_client = OpenAI(api_key=os.getenv("PERPLEXITY_API_KEY"), base_url="https://api.perplexity.ai")
|
25 |
+
gpt_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def get_answers( query: str ):
|
30 |
+
context = extract_data(query, 1)
|
31 |
+
return context
|
32 |
+
|
33 |
+
# with torch.no_grad():
|
34 |
+
# model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta')
|
35 |
+
# tokenizer = AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta', TOKENIZERS_PARALLELISM=True)
|
36 |
+
|
37 |
+
# def cal_score(input_data):
|
38 |
+
# # Initialize model and tokenizer inside the function
|
39 |
+
# with torch.no_grad():
|
40 |
+
# inputs = tokenizer(input_data, padding=True, truncation=True, return_tensors="pt")
|
41 |
+
# outputs = model.get_input_embeddings(inputs["input_ids"])
|
42 |
+
|
43 |
+
# a, b = outputs[0], outputs[1] # Adjust based on your model's output structure
|
44 |
+
|
45 |
+
# # Normalize the tensors
|
46 |
+
# a_norm = a / a.norm(dim=1)[:, None]
|
47 |
+
# b_norm = b / b.norm(dim=1)[:, None]
|
48 |
+
|
49 |
+
# print(a.shape, b.shape)
|
50 |
+
|
51 |
+
# # Return the similarity score
|
52 |
+
# # return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100
|
53 |
+
# a_norm = a_norm.reshape(1, -1)
|
54 |
+
# b_norm = b_norm.reshape(1, -1)
|
55 |
+
# similarity_score = cosine_similarity(a_norm, b_norm)
|
56 |
+
|
57 |
+
# # Return the similarity score (assuming you want the average of the similarities across the tokens)
|
58 |
+
# return similarity_score # Scalar value
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
# def get_match_scores( message: str, query: str, answers: list[dict[str, object]] ):
|
63 |
+
# start = time.time()
|
64 |
+
# max_processes = 4
|
65 |
+
# with multiprocessing.Pool(processes=max_processes) as pool:
|
66 |
+
# scores = pool.map(cal_score, [[answer['questionDetails'], message] for answer in answers])
|
67 |
+
# print(f"Time taken to compare: {time.time() - start} seconds")
|
68 |
+
# print("Scores: ", scores)
|
69 |
+
# return scores
|
70 |
+
|
71 |
+
def get_naver_answers( message: str ):
|
72 |
+
print(">>> Starting naver extraction...")
|
73 |
+
print("Question: ", message)
|
74 |
+
naver_start_time = time.time()
|
75 |
+
response = gemini_client.models.generate_content(
|
76 |
+
model = genai_model,
|
77 |
+
contents=f"{message}\n 위의 내용을 짧은 제목으로 요약합니다. 제목만 보여주세요. 대답하지 마세요",
|
78 |
+
)
|
79 |
+
query = response.text
|
80 |
+
print( "Query: ", query)
|
81 |
+
|
82 |
+
context = get_answers( query )
|
83 |
+
|
84 |
+
sorted_answers = ['. '.join(answer['answers']) for answer in context]
|
85 |
+
naver_end_time = time.time()
|
86 |
+
print(f"Time taken to extract from Naver: { naver_end_time - naver_start_time } seconds")
|
87 |
+
document = '\n'.join(sorted_answers)
|
88 |
+
return document, naver_end_time - naver_start_time
|
89 |
+
|
90 |
+
def get_qwen_big_answer( message: str ):
|
91 |
+
print(">>> Starting Qwen 72B extraction...")
|
92 |
+
qwen_start_time = time.time()
|
93 |
+
response = together_client.chat.completions.create(
|
94 |
+
model="Qwen/Qwen2.5-72B-Instruct-Turbo",
|
95 |
+
messages=[
|
96 |
+
{"role": "system", "content": "You are a helpful question-answer, CONCISE conversation assistant that answers in Korean."},
|
97 |
+
{"role": "user", "content": message}
|
98 |
+
]
|
99 |
+
)
|
100 |
+
|
101 |
+
qwen_end_time = time.time()
|
102 |
+
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
|
103 |
+
return response.choices[0].message.content, qwen_end_time - qwen_start_time
|
104 |
+
|
105 |
+
def get_qwen_small_answer( message: str ):
|
106 |
+
print(">>> Starting Qwen 7B extraction...")
|
107 |
+
qwen_start_time = time.time()
|
108 |
+
response = together_client.chat.completions.create(
|
109 |
+
model="Qwen/Qwen2.5-7B-Instruct-Turbo",
|
110 |
+
messages=[
|
111 |
+
{"role": "system", "content": "You are a helpful question-answer, CONCISE conversation assistant that answers in Korean."},
|
112 |
+
{"role": "user", "content": message}
|
113 |
+
]
|
114 |
+
#TODO: Change the messages option
|
115 |
+
)
|
116 |
+
qwen_end_time = time.time()
|
117 |
+
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
|
118 |
+
return response.choices[0].message.content, qwen_end_time - qwen_start_time
|
119 |
+
|
120 |
+
def get_llama_small_answer( message: str ):
|
121 |
+
print(">>> Starting Llama 3.1 8B extraction...")
|
122 |
+
llama_start_time = time.time()
|
123 |
+
response = together_client.chat.completions.create(
|
124 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
125 |
+
messages=[
|
126 |
+
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
|
127 |
+
{
|
128 |
+
"role": "user",
|
129 |
+
"content": message
|
130 |
+
}
|
131 |
+
]
|
132 |
+
)
|
133 |
+
llama_end_time = time.time()
|
134 |
+
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
|
135 |
+
return response.choices[0].message.content, llama_end_time - llama_start_time
|
136 |
+
|
137 |
+
def get_llama_big_answer( message: str ):
|
138 |
+
print(">>> Starting Llama 3.1 70B extraction...")
|
139 |
+
llama_start_time = time.time()
|
140 |
+
response = together_client.chat.completions.create(
|
141 |
+
model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
142 |
+
messages=[
|
143 |
+
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
|
144 |
+
{
|
145 |
+
"role": "user",
|
146 |
+
"content": message
|
147 |
+
}
|
148 |
+
]
|
149 |
+
)
|
150 |
+
llama_end_time = time.time()
|
151 |
+
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
|
152 |
+
return response.choices[0].message.content, llama_end_time - llama_start_time
|
153 |
+
|
154 |
+
|
155 |
+
def get_gemini_answer( message: str ):
|
156 |
+
print(">>> Starting gemini extraction...")
|
157 |
+
gemini_start_time = time.time()
|
158 |
+
response = gemini_client.models.generate_content(
|
159 |
+
model = genai_model,
|
160 |
+
contents=message,
|
161 |
+
)
|
162 |
+
gemini_end_time = time.time()
|
163 |
+
print(f"Time taken to extract from Gemini: { gemini_end_time - gemini_start_time } seconds")
|
164 |
+
return response.candidates[0].content, gemini_end_time - gemini_start_time
|
165 |
+
|
166 |
+
# def get_perplexity_answer( message: str ):
|
167 |
+
# print(">>> Starting perplexity extraction...")
|
168 |
+
# perplexity_start_time = time.time()
|
169 |
+
# messages = [
|
170 |
+
# {
|
171 |
+
# "role": "system",
|
172 |
+
# "content": (
|
173 |
+
# "You are an artificial intelligence assistant and you need to "
|
174 |
+
# "engage in a helpful, CONCISE, polite question-answer conversation with a user."
|
175 |
+
# ),
|
176 |
+
# },
|
177 |
+
# {
|
178 |
+
# "role": "user",
|
179 |
+
# "content": (
|
180 |
+
# message
|
181 |
+
# ),
|
182 |
+
# },
|
183 |
+
# ]
|
184 |
+
# response = perplexity_client.chat.completions.create(
|
185 |
+
# model="llama-3.1-sonar-small-128k-online",
|
186 |
+
# messages=messages
|
187 |
+
# )
|
188 |
+
# perplexity_end_time = time.time()
|
189 |
+
# print(f"Time taken to extract from Perplexity: { perplexity_end_time - perplexity_start_time } seconds")
|
190 |
+
# return response.choices[0].message.content, perplexity_end_time - perplexity_start_time
|
191 |
+
|
192 |
+
def get_gpt_answer( message: str ):
|
193 |
+
print(">>> Starting GPT extraction...")
|
194 |
+
gpt_start_time = time.time()
|
195 |
+
completion = gpt_client.chat.completions.create(
|
196 |
+
model="gpt-4o-mini",
|
197 |
+
messages=[
|
198 |
+
{"role": "system", "content": "You are a helpful assistant that gives short answers and nothing extra."},
|
199 |
+
{
|
200 |
+
"role": "user",
|
201 |
+
"content": message
|
202 |
+
}
|
203 |
+
]
|
204 |
+
)
|
205 |
+
gpt_end_time = time.time()
|
206 |
+
print(f"Time taken to extract from GPT: { gpt_end_time - gpt_start_time } seconds")
|
207 |
+
return completion.choices[0].message.content, gpt_end_time - gpt_start_time
|
208 |
+
|
209 |
+
def compare_answers(message: str):
|
210 |
+
methods = [
|
211 |
+
("Qwen Big (72B)", get_qwen_big_answer),
|
212 |
+
("Qwen Small (7B)", get_qwen_small_answer),
|
213 |
+
("Llama Small (8B)", get_llama_small_answer),
|
214 |
+
("Llama Big (70B)", get_llama_big_answer),
|
215 |
+
("Gemini-2.0-Flash", get_gemini_answer),
|
216 |
+
# ("Perplexity", get_perplexity_answer),
|
217 |
+
("GPT (4o-mini)", get_gpt_answer)
|
218 |
+
]
|
219 |
+
|
220 |
+
results = []
|
221 |
+
|
222 |
+
naver_docs, naver_time_taken = get_naver_answers( message )
|
223 |
+
content = f'아래 문서를 바탕으로 질문에 답하세요. 답변은 한국어로만 해주세요 \n 질문 {message}\n'
|
224 |
+
content += naver_docs
|
225 |
+
print("Starting the comparison between summarizers...")
|
226 |
+
for method_name, method in methods:
|
227 |
+
answer, time_taken = method(content)
|
228 |
+
results.append({
|
229 |
+
"Method": f"Naver + ({method_name})",
|
230 |
+
"Question": message,
|
231 |
+
"Answer": answer,
|
232 |
+
"Time Taken": naver_time_taken + time_taken
|
233 |
+
})
|
234 |
+
|
235 |
+
print("Starting the comparison between extractors/summarizers...")
|
236 |
+
for method_name, method in methods:
|
237 |
+
additional_docs, time_taken = method(message)
|
238 |
+
results.append({
|
239 |
+
"Method": method_name,
|
240 |
+
"Question": message,
|
241 |
+
"Answer": additional_docs,
|
242 |
+
"Time Taken": time_taken
|
243 |
+
})
|
244 |
+
content += f'\n{additional_docs}'
|
245 |
+
time_taken += naver_time_taken
|
246 |
+
for summarizer_name, summarizer in methods:
|
247 |
+
answer, answer_time = summarizer(content)
|
248 |
+
results.append({
|
249 |
+
"Method": f"Naver + {method_name} + ({summarizer_name})",
|
250 |
+
"Question": message,
|
251 |
+
"Answer": answer,
|
252 |
+
"Time Taken": time_taken + answer_time
|
253 |
+
})
|
254 |
+
return results
|
255 |
+
|
256 |
+
def chatFunction( message, history ):
|
257 |
+
content = f'아래 문서를 바탕으로 질문에 답하세요. 답변에서 질문을 따라 출력 하지 마세요. 답변은 한국어로만 해주세요. 찾은 Naver 문서와 다른 문서에서 답변이 없는 내용은 절대 출력하지 마세요 \n 질문: {message}\n 문서: '
|
258 |
+
naver_docs, naver_time_taken = get_naver_answers( message )
|
259 |
+
|
260 |
+
start_time = time.time()
|
261 |
+
content += "\n Naver 문서: " + naver_docs
|
262 |
+
|
263 |
+
completion = gpt_client.chat.completions.create(
|
264 |
+
model="gpt-4o-mini",
|
265 |
+
messages=[
|
266 |
+
{"role": "system", "content": "You are a helpful assistant that answers only in korean."},
|
267 |
+
{
|
268 |
+
"role": "user",
|
269 |
+
"content": message
|
270 |
+
}
|
271 |
+
]
|
272 |
+
)
|
273 |
+
gpt_resp = completion.choices[0].message.content
|
274 |
+
content += "\n 다른 문서: " + gpt_resp
|
275 |
+
|
276 |
+
# content += "\n" + gpt_resp
|
277 |
+
|
278 |
+
answer, _ = get_qwen_small_answer(content)
|
279 |
+
|
280 |
+
print("-"*70)
|
281 |
+
print("Question: ", message)
|
282 |
+
print("Answer: ", answer)
|
283 |
+
time_taken = time.time() - start_time
|
284 |
+
print("Time taken to summarize: ", time_taken)
|
285 |
+
return answer
|
286 |
+
|
287 |
|
288 |
if __name__ == "__main__":
|
289 |
+
# multiprocessing.set_start_method("fork", force=True)
|
290 |
+
# if multiprocessing.get_start_method(allow_none=True) is None:
|
291 |
+
# multiprocessing.set_start_method("fork")
|
292 |
+
with gr.ChatInterface( fn=chatFunction, type="messages" ) as demo: pass
|
293 |
+
demo.launch(share=True)
|
294 |
+
# with open("test_questions.txt", "r") as f:
|
295 |
+
# if os.path.exists("comparison_results.csv"):
|
296 |
+
# if input("Do you want to delete the former results? (y/n): ") == "y":
|
297 |
+
# os.remove("comparison_results.csv")
|
298 |
+
# questions = f.readlines()
|
299 |
+
# print(questions)
|
300 |
+
# for idx, question in enumerate(questions):
|
301 |
+
# print(" -> Starting the question number: ", idx)
|
302 |
+
# results = compare_answers(question)
|
303 |
+
# df = pd.DataFrame(results)
|
304 |
+
# df.to_csv("comparison_results.csv", mode='a', index=False)
|
305 |
+
|
306 |
+
|
crawler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bs4 import BeautifulSoup
|
2 |
+
import re
|
3 |
+
import requests as r
|
4 |
+
from html2text import html2text
|
5 |
+
import tqdm
|
6 |
+
|
7 |
+
def process_url(url):
|
8 |
+
"""Process a single URL to fetch answers."""
|
9 |
+
try:
|
10 |
+
response = r.get(url)
|
11 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
12 |
+
# answers = []
|
13 |
+
# for idx in range(1, 100):
|
14 |
+
# answer = soup.find('div', {'id': f'answer_{idx}'})
|
15 |
+
# if answer:
|
16 |
+
# answers.append(answer)
|
17 |
+
# else:
|
18 |
+
# break
|
19 |
+
answers = soup.find_all('div', {'id': re.compile(r'answer_\d+')})
|
20 |
+
answers = [html2text(str(answer.find('div', {'class': "answerDetail"}).prettify()))
|
21 |
+
for answer in answers if answer.find('div', {'class': "answerDetail"})]
|
22 |
+
title = soup.find('div', {'class': 'endTitleSection'}).text.strip()
|
23 |
+
questionDetails = soup.find('div', {'class': 'questionDetail'}).text.strip()
|
24 |
+
# print("Question: ", questionDetails, '\n')
|
25 |
+
title = title.replace("질문", '').strip()
|
26 |
+
print("Answers extracted from: \n", url)
|
27 |
+
print(len(answers))
|
28 |
+
print('-'*60)
|
29 |
+
return {
|
30 |
+
"title": title,
|
31 |
+
"questionDetails": questionDetails,
|
32 |
+
"url": url,
|
33 |
+
"answers": answers
|
34 |
+
}
|
35 |
+
except Exception as e:
|
36 |
+
print(f"Error processing URL {url}: {e}")
|
37 |
+
with open('error_urls.txt', 'w') as f:
|
38 |
+
f.write(url + '\n')
|
39 |
+
return {"title": '', "questionDetails": '', "url": url, "answers": ''}
|
40 |
+
|
41 |
+
def get_answers(results_a_elements, query):
|
42 |
+
"""Fetch answers for all the extracted result links."""
|
43 |
+
if not results_a_elements:
|
44 |
+
print("No results found.")
|
45 |
+
return []
|
46 |
+
|
47 |
+
print("Result links extracted: ", len(results_a_elements))
|
48 |
+
|
49 |
+
# Limit the number of parallel processes for better resource management
|
50 |
+
# max_processes = 4
|
51 |
+
|
52 |
+
# with multiprocessing.Pool(processes=max_processes) as pool:
|
53 |
+
# results = pool.map(process_url, results_a_elements)
|
54 |
+
|
55 |
+
results = []
|
56 |
+
for url in tqdm.tqdm(results_a_elements):
|
57 |
+
results.append(process_url(url))
|
58 |
+
return results
|
59 |
+
|
60 |
+
def get_search_results(query, num_pages):
|
61 |
+
"""Fetch search results for the given query from Naver 지식in."""
|
62 |
+
results = []
|
63 |
+
for page in range(1, num_pages + 1):
|
64 |
+
url = f"https://kin.naver.com/search/list.naver?query={query}&page={page}"
|
65 |
+
print("Starting the scraping process for:\n", url)
|
66 |
+
|
67 |
+
try:
|
68 |
+
response = r.get(url)
|
69 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
70 |
+
results_a_elements = soup.find("ul", {"class": "basic1"}).find_all("a", {"class": "_searchListTitleAnchor"})
|
71 |
+
results_a_elements = [a.get('href') for a in results_a_elements if a.get("href")]
|
72 |
+
results += results_a_elements
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Error while fetching search results: {e}")
|
75 |
+
return results
|
76 |
+
|
77 |
+
def extract_data(query, num_pages=150) -> list[dict[str, object]]:
|
78 |
+
results_a_elements = get_search_results(query, num_pages)
|
79 |
+
answers = get_answers(results_a_elements, query)
|
80 |
+
print("Total answers collected:", len(answers))
|
81 |
+
return answers
|
82 |
+
|
83 |
+
# if __name__ == "__main__":
|
84 |
+
# start = time.time()
|
85 |
+
# query = "장래희망, 인공지능 개발자/연구원, 파이썬, 중학생 수준, 파이썬 설치, 도서 추천"
|
86 |
+
# answers = process_query(query)
|
87 |
+
# print("Total answers collected:", len(answers))
|
88 |
+
# print("Time taken: ", time.time() - start)
|
89 |
+
# # print(answers)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
# AJAX URL:
|
95 |
+
# https://kin.naver.com/ajax/detail/answerList.naver?
|
96 |
+
# dirId=401030201&docId=292159869
|
97 |
+
# &answerSortType=DEFAULT&answerViewType=DETAIL
|
98 |
+
# &answerNo=&page=2&count=5&_=1736131792605
|
requirements.txt
CHANGED
@@ -1 +1,19 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
beautifulsoup4
|
2 |
+
# selenium
|
3 |
+
# webdriver-manager
|
4 |
+
# fastapi[standard]
|
5 |
+
# uvicorn[standard]
|
6 |
+
html2text
|
7 |
+
transformers
|
8 |
+
openai
|
9 |
+
google-genai
|
10 |
+
# transformers[torch]
|
11 |
+
# torch
|
12 |
+
# torchvision
|
13 |
+
# torchaudio
|
14 |
+
gradio
|
15 |
+
# scikit-learn
|
16 |
+
together
|
17 |
+
python-dotenv
|
18 |
+
openpyxl
|
19 |
+
tonic-validate
|