Spaces:
Running
Running
''' | |
Neural Style Transfer using TensorFlow's Pretrained Style Transfer Model | |
https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2 | |
''' | |
import gradio as gr | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import os | |
model = hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2") | |
# source: https://stackoverflow.com/questions/4993082/how-can-i-sharpen-an-image-in-opencv | |
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0): | |
"""Return a sharpened version of the image, using an unsharp mask.""" | |
blurred = cv2.GaussianBlur(image, kernel_size, sigma) | |
sharpened = float(amount + 1) * image - float(amount) * blurred | |
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) | |
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) | |
sharpened = sharpened.round().astype(np.uint8) | |
if threshold > 0: | |
low_contrast_mask = np.absolute(image - blurred) < threshold | |
np.copyto(sharpened, image, where=low_contrast_mask) | |
return sharpened | |
def style_transfer(content_img,style_image, style_weight = 1, content_weight = 1, style_blur=False): | |
content_img = unsharp_mask(content_img,amount=1) | |
content_img = tf.image.resize(tf.convert_to_tensor(content_img,tf.float32)[tf.newaxis,...] / 255.,(512,512),preserve_aspect_ratio=True) | |
style_img = tf.convert_to_tensor(style_image,tf.float32)[tf.newaxis,...] / 255. | |
if style_blur: | |
style_img= tf.nn.avg_pool(style_img, [3,3], [1,1], "VALID") | |
style_img = tf.image.adjust_contrast(style_img, style_weight) | |
content_img = tf.image.adjust_contrast(content_img,content_weight) | |
content_img = tf.image.adjust_saturation(content_img, 2) | |
content_img = tf.image.adjust_contrast(content_img,1.5) | |
stylized_img = model(content_img, style_img)[0] | |
return Image.fromarray(np.uint8(stylized_img[0]*255)) | |
title = "PixelFusion🧬" | |
description = "Gradio Demo for Artistic Neural Style Transfer. To use it, simply upload a content image and a style image. [Learn More](https://www.tensorflow.org/tutorials/generative/style_transfer)." | |
article = "</br><p style='text-align: center'><a href='https://github.com/0xsynapse' target='_blank'>GitHub</a></p> " | |
content_input = gr.Image(label="Upload Your Image ",) | |
style_input = gr.Image( label="Upload Style Image ",) | |
style_slider = gr.Slider(0,2,label="Adjust Style Density" , value=1,) | |
content_slider = gr.Slider(1,5,label="Content Sharpness" , value=1,) | |
# style_checkbox = gr.Checkbox(value=False,label="Tune Style(experimental)") | |
examples = [ | |
["Content/content_1.jpg","Styles/style_1.jpg",1.20,1.70,"style_checkbox"], | |
["Content/content_2.jpg","Styles/style_2.jpg",0.91,2.54,"style_checkbox"], | |
["Content/content_3.png","Styles/style_3.jpg",1.02,2.47,"style_checkbox"] | |
] | |
interface = gr.Interface(fn=style_transfer, | |
inputs=[content_input, | |
style_input, | |
style_slider , | |
content_slider, | |
# style_checkbox | |
], | |
outputs=gr.Image(type="pil"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
) | |
interface.launch() |