ankush13r commited on
Commit
fde7ff2
1 Parent(s): 698696a

single file

Browse files
Files changed (2) hide show
  1. app.py +20 -1
  2. whisper.py +0 -24
app.py CHANGED
@@ -2,15 +2,34 @@
2
  import gradio as gr
3
  from whisper import generate
4
  from AinaTheme import theme
 
 
 
 
 
5
 
6
  MODEL_NAME = "Systran/faster-whisper-large-v3"
 
 
 
7
 
8
  def transcribe(inputs):
9
  if inputs is None:
10
  raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
11
  "o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")
12
 
13
- return generate(audio_path=inputs)
 
 
 
 
 
 
 
 
 
 
 
14
 
15
 
16
  description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
 
2
  import gradio as gr
3
  from whisper import generate
4
  from AinaTheme import theme
5
+ from faster_whisper import WhisperModel
6
+ import torch
7
+
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ torch_dtype = "float32"
10
 
11
  MODEL_NAME = "Systran/faster-whisper-large-v3"
12
+ print("Loading model ...")
13
+ model = WhisperModel(MODEL_NAME, compute_type=torch_dtype)
14
+ print("Loading model done.")
15
 
16
  def transcribe(inputs):
17
  if inputs is None:
18
  raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
19
  "o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")
20
 
21
+ segments, _ = model.transcribe(
22
+ inputs,
23
+ # language="ca",
24
+ # chunk_length=30,
25
+ task="transcribe",
26
+ word_timestamps=False,
27
+ )
28
+
29
+ text = ""
30
+ for segment in segments:
31
+ text += " " + segment.text.strip()
32
+ return text
33
 
34
 
35
  description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
whisper.py DELETED
@@ -1,24 +0,0 @@
1
- from faster_whisper import WhisperModel
2
- import torch
3
-
4
- device = "cuda" if torch.cuda.is_available() else "cpu"
5
- torch_dtype = "float32"
6
-
7
- MODEL_NAME = "Systran/faster-whisper-large-v3"
8
- model = WhisperModel(MODEL_NAME, compute_type=torch_dtype)
9
-
10
- def generate(audio_path):
11
- #check audio lenght
12
- segments, _ = model.transcribe(
13
- audio_path,
14
- # language="ca",
15
- # chunk_length=30,
16
- task="transcribe",
17
- word_timestamps=False,
18
- )
19
-
20
- text = ""
21
- for segment in segments:
22
- text += " " + segment.text.strip()
23
- return text
24
-