Spaces:
Running
Running
single file
Browse files- app.py +20 -1
- whisper.py +0 -24
app.py
CHANGED
@@ -2,15 +2,34 @@
|
|
2 |
import gradio as gr
|
3 |
from whisper import generate
|
4 |
from AinaTheme import theme
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
MODEL_NAME = "Systran/faster-whisper-large-v3"
|
|
|
|
|
|
|
7 |
|
8 |
def transcribe(inputs):
|
9 |
if inputs is None:
|
10 |
raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
|
11 |
"o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
|
|
|
2 |
import gradio as gr
|
3 |
from whisper import generate
|
4 |
from AinaTheme import theme
|
5 |
+
from faster_whisper import WhisperModel
|
6 |
+
import torch
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
torch_dtype = "float32"
|
10 |
|
11 |
MODEL_NAME = "Systran/faster-whisper-large-v3"
|
12 |
+
print("Loading model ...")
|
13 |
+
model = WhisperModel(MODEL_NAME, compute_type=torch_dtype)
|
14 |
+
print("Loading model done.")
|
15 |
|
16 |
def transcribe(inputs):
|
17 |
if inputs is None:
|
18 |
raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
|
19 |
"o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")
|
20 |
|
21 |
+
segments, _ = model.transcribe(
|
22 |
+
inputs,
|
23 |
+
# language="ca",
|
24 |
+
# chunk_length=30,
|
25 |
+
task="transcribe",
|
26 |
+
word_timestamps=False,
|
27 |
+
)
|
28 |
+
|
29 |
+
text = ""
|
30 |
+
for segment in segments:
|
31 |
+
text += " " + segment.text.strip()
|
32 |
+
return text
|
33 |
|
34 |
|
35 |
description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
|
whisper.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
from faster_whisper import WhisperModel
|
2 |
-
import torch
|
3 |
-
|
4 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
5 |
-
torch_dtype = "float32"
|
6 |
-
|
7 |
-
MODEL_NAME = "Systran/faster-whisper-large-v3"
|
8 |
-
model = WhisperModel(MODEL_NAME, compute_type=torch_dtype)
|
9 |
-
|
10 |
-
def generate(audio_path):
|
11 |
-
#check audio lenght
|
12 |
-
segments, _ = model.transcribe(
|
13 |
-
audio_path,
|
14 |
-
# language="ca",
|
15 |
-
# chunk_length=30,
|
16 |
-
task="transcribe",
|
17 |
-
word_timestamps=False,
|
18 |
-
)
|
19 |
-
|
20 |
-
text = ""
|
21 |
-
for segment in segments:
|
22 |
-
text += " " + segment.text.strip()
|
23 |
-
return text
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|