annapurnapadmaprema-ji
commited on
Upload 3 files
Browse files- .gitattributes +1 -0
- colorization_deploy_v2.prototxt +589 -0
- colorization_release_v2.caffemodel +3 -0
- pts_in_hull.npy +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
colorization_release_v2.caffemodel filter=lfs diff=lfs merge=lfs -text
|
colorization_deploy_v2.prototxt
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "LtoAB"
|
2 |
+
|
3 |
+
layer {
|
4 |
+
name: "data_l"
|
5 |
+
type: "Input"
|
6 |
+
top: "data_l"
|
7 |
+
input_param {
|
8 |
+
shape { dim: 1 dim: 1 dim: 224 dim: 224 }
|
9 |
+
}
|
10 |
+
}
|
11 |
+
|
12 |
+
# *****************
|
13 |
+
# ***** conv1 *****
|
14 |
+
# *****************
|
15 |
+
layer {
|
16 |
+
name: "bw_conv1_1"
|
17 |
+
type: "Convolution"
|
18 |
+
bottom: "data_l"
|
19 |
+
top: "conv1_1"
|
20 |
+
# param {lr_mult: 0 decay_mult: 0}
|
21 |
+
# param {lr_mult: 0 decay_mult: 0}
|
22 |
+
convolution_param {
|
23 |
+
num_output: 64
|
24 |
+
pad: 1
|
25 |
+
kernel_size: 3
|
26 |
+
}
|
27 |
+
}
|
28 |
+
layer {
|
29 |
+
name: "relu1_1"
|
30 |
+
type: "ReLU"
|
31 |
+
bottom: "conv1_1"
|
32 |
+
top: "conv1_1"
|
33 |
+
}
|
34 |
+
layer {
|
35 |
+
name: "conv1_2"
|
36 |
+
type: "Convolution"
|
37 |
+
bottom: "conv1_1"
|
38 |
+
top: "conv1_2"
|
39 |
+
# param {lr_mult: 0 decay_mult: 0}
|
40 |
+
# param {lr_mult: 0 decay_mult: 0}
|
41 |
+
convolution_param {
|
42 |
+
num_output: 64
|
43 |
+
pad: 1
|
44 |
+
kernel_size: 3
|
45 |
+
stride: 2
|
46 |
+
}
|
47 |
+
}
|
48 |
+
layer {
|
49 |
+
name: "relu1_2"
|
50 |
+
type: "ReLU"
|
51 |
+
bottom: "conv1_2"
|
52 |
+
top: "conv1_2"
|
53 |
+
}
|
54 |
+
layer {
|
55 |
+
name: "conv1_2norm"
|
56 |
+
type: "BatchNorm"
|
57 |
+
bottom: "conv1_2"
|
58 |
+
top: "conv1_2norm"
|
59 |
+
batch_norm_param{ }
|
60 |
+
param {lr_mult: 0 decay_mult: 0}
|
61 |
+
param {lr_mult: 0 decay_mult: 0}
|
62 |
+
param {lr_mult: 0 decay_mult: 0}
|
63 |
+
}
|
64 |
+
# *****************
|
65 |
+
# ***** conv2 *****
|
66 |
+
# *****************
|
67 |
+
layer {
|
68 |
+
name: "conv2_1"
|
69 |
+
type: "Convolution"
|
70 |
+
# bottom: "conv1_2"
|
71 |
+
bottom: "conv1_2norm"
|
72 |
+
# bottom: "pool1"
|
73 |
+
top: "conv2_1"
|
74 |
+
# param {lr_mult: 0 decay_mult: 0}
|
75 |
+
# param {lr_mult: 0 decay_mult: 0}
|
76 |
+
convolution_param {
|
77 |
+
num_output: 128
|
78 |
+
pad: 1
|
79 |
+
kernel_size: 3
|
80 |
+
}
|
81 |
+
}
|
82 |
+
layer {
|
83 |
+
name: "relu2_1"
|
84 |
+
type: "ReLU"
|
85 |
+
bottom: "conv2_1"
|
86 |
+
top: "conv2_1"
|
87 |
+
}
|
88 |
+
layer {
|
89 |
+
name: "conv2_2"
|
90 |
+
type: "Convolution"
|
91 |
+
bottom: "conv2_1"
|
92 |
+
top: "conv2_2"
|
93 |
+
# param {lr_mult: 0 decay_mult: 0}
|
94 |
+
# param {lr_mult: 0 decay_mult: 0}
|
95 |
+
convolution_param {
|
96 |
+
num_output: 128
|
97 |
+
pad: 1
|
98 |
+
kernel_size: 3
|
99 |
+
stride: 2
|
100 |
+
}
|
101 |
+
}
|
102 |
+
layer {
|
103 |
+
name: "relu2_2"
|
104 |
+
type: "ReLU"
|
105 |
+
bottom: "conv2_2"
|
106 |
+
top: "conv2_2"
|
107 |
+
}
|
108 |
+
layer {
|
109 |
+
name: "conv2_2norm"
|
110 |
+
type: "BatchNorm"
|
111 |
+
bottom: "conv2_2"
|
112 |
+
top: "conv2_2norm"
|
113 |
+
batch_norm_param{ }
|
114 |
+
param {lr_mult: 0 decay_mult: 0}
|
115 |
+
param {lr_mult: 0 decay_mult: 0}
|
116 |
+
param {lr_mult: 0 decay_mult: 0}
|
117 |
+
}
|
118 |
+
# *****************
|
119 |
+
# ***** conv3 *****
|
120 |
+
# *****************
|
121 |
+
layer {
|
122 |
+
name: "conv3_1"
|
123 |
+
type: "Convolution"
|
124 |
+
# bottom: "conv2_2"
|
125 |
+
bottom: "conv2_2norm"
|
126 |
+
# bottom: "pool2"
|
127 |
+
top: "conv3_1"
|
128 |
+
# param {lr_mult: 0 decay_mult: 0}
|
129 |
+
# param {lr_mult: 0 decay_mult: 0}
|
130 |
+
convolution_param {
|
131 |
+
num_output: 256
|
132 |
+
pad: 1
|
133 |
+
kernel_size: 3
|
134 |
+
}
|
135 |
+
}
|
136 |
+
layer {
|
137 |
+
name: "relu3_1"
|
138 |
+
type: "ReLU"
|
139 |
+
bottom: "conv3_1"
|
140 |
+
top: "conv3_1"
|
141 |
+
}
|
142 |
+
layer {
|
143 |
+
name: "conv3_2"
|
144 |
+
type: "Convolution"
|
145 |
+
bottom: "conv3_1"
|
146 |
+
top: "conv3_2"
|
147 |
+
# param {lr_mult: 0 decay_mult: 0}
|
148 |
+
# param {lr_mult: 0 decay_mult: 0}
|
149 |
+
convolution_param {
|
150 |
+
num_output: 256
|
151 |
+
pad: 1
|
152 |
+
kernel_size: 3
|
153 |
+
}
|
154 |
+
}
|
155 |
+
layer {
|
156 |
+
name: "relu3_2"
|
157 |
+
type: "ReLU"
|
158 |
+
bottom: "conv3_2"
|
159 |
+
top: "conv3_2"
|
160 |
+
}
|
161 |
+
layer {
|
162 |
+
name: "conv3_3"
|
163 |
+
type: "Convolution"
|
164 |
+
bottom: "conv3_2"
|
165 |
+
top: "conv3_3"
|
166 |
+
# param {lr_mult: 0 decay_mult: 0}
|
167 |
+
# param {lr_mult: 0 decay_mult: 0}
|
168 |
+
convolution_param {
|
169 |
+
num_output: 256
|
170 |
+
pad: 1
|
171 |
+
kernel_size: 3
|
172 |
+
stride: 2
|
173 |
+
}
|
174 |
+
}
|
175 |
+
layer {
|
176 |
+
name: "relu3_3"
|
177 |
+
type: "ReLU"
|
178 |
+
bottom: "conv3_3"
|
179 |
+
top: "conv3_3"
|
180 |
+
}
|
181 |
+
layer {
|
182 |
+
name: "conv3_3norm"
|
183 |
+
type: "BatchNorm"
|
184 |
+
bottom: "conv3_3"
|
185 |
+
top: "conv3_3norm"
|
186 |
+
batch_norm_param{ }
|
187 |
+
param {lr_mult: 0 decay_mult: 0}
|
188 |
+
param {lr_mult: 0 decay_mult: 0}
|
189 |
+
param {lr_mult: 0 decay_mult: 0}
|
190 |
+
}
|
191 |
+
# *****************
|
192 |
+
# ***** conv4 *****
|
193 |
+
# *****************
|
194 |
+
layer {
|
195 |
+
name: "conv4_1"
|
196 |
+
type: "Convolution"
|
197 |
+
# bottom: "conv3_3"
|
198 |
+
bottom: "conv3_3norm"
|
199 |
+
# bottom: "pool3"
|
200 |
+
top: "conv4_1"
|
201 |
+
# param {lr_mult: 0 decay_mult: 0}
|
202 |
+
# param {lr_mult: 0 decay_mult: 0}
|
203 |
+
convolution_param {
|
204 |
+
num_output: 512
|
205 |
+
kernel_size: 3
|
206 |
+
stride: 1
|
207 |
+
pad: 1
|
208 |
+
dilation: 1
|
209 |
+
}
|
210 |
+
}
|
211 |
+
layer {
|
212 |
+
name: "relu4_1"
|
213 |
+
type: "ReLU"
|
214 |
+
bottom: "conv4_1"
|
215 |
+
top: "conv4_1"
|
216 |
+
}
|
217 |
+
layer {
|
218 |
+
name: "conv4_2"
|
219 |
+
type: "Convolution"
|
220 |
+
bottom: "conv4_1"
|
221 |
+
top: "conv4_2"
|
222 |
+
# param {lr_mult: 0 decay_mult: 0}
|
223 |
+
# param {lr_mult: 0 decay_mult: 0}
|
224 |
+
convolution_param {
|
225 |
+
num_output: 512
|
226 |
+
kernel_size: 3
|
227 |
+
stride: 1
|
228 |
+
pad: 1
|
229 |
+
dilation: 1
|
230 |
+
}
|
231 |
+
}
|
232 |
+
layer {
|
233 |
+
name: "relu4_2"
|
234 |
+
type: "ReLU"
|
235 |
+
bottom: "conv4_2"
|
236 |
+
top: "conv4_2"
|
237 |
+
}
|
238 |
+
layer {
|
239 |
+
name: "conv4_3"
|
240 |
+
type: "Convolution"
|
241 |
+
bottom: "conv4_2"
|
242 |
+
top: "conv4_3"
|
243 |
+
# param {lr_mult: 0 decay_mult: 0}
|
244 |
+
# param {lr_mult: 0 decay_mult: 0}
|
245 |
+
convolution_param {
|
246 |
+
num_output: 512
|
247 |
+
kernel_size: 3
|
248 |
+
stride: 1
|
249 |
+
pad: 1
|
250 |
+
dilation: 1
|
251 |
+
}
|
252 |
+
}
|
253 |
+
layer {
|
254 |
+
name: "relu4_3"
|
255 |
+
type: "ReLU"
|
256 |
+
bottom: "conv4_3"
|
257 |
+
top: "conv4_3"
|
258 |
+
}
|
259 |
+
layer {
|
260 |
+
name: "conv4_3norm"
|
261 |
+
type: "BatchNorm"
|
262 |
+
bottom: "conv4_3"
|
263 |
+
top: "conv4_3norm"
|
264 |
+
batch_norm_param{ }
|
265 |
+
param {lr_mult: 0 decay_mult: 0}
|
266 |
+
param {lr_mult: 0 decay_mult: 0}
|
267 |
+
param {lr_mult: 0 decay_mult: 0}
|
268 |
+
}
|
269 |
+
# *****************
|
270 |
+
# ***** conv5 *****
|
271 |
+
# *****************
|
272 |
+
layer {
|
273 |
+
name: "conv5_1"
|
274 |
+
type: "Convolution"
|
275 |
+
# bottom: "conv4_3"
|
276 |
+
bottom: "conv4_3norm"
|
277 |
+
# bottom: "pool4"
|
278 |
+
top: "conv5_1"
|
279 |
+
# param {lr_mult: 0 decay_mult: 0}
|
280 |
+
# param {lr_mult: 0 decay_mult: 0}
|
281 |
+
convolution_param {
|
282 |
+
num_output: 512
|
283 |
+
kernel_size: 3
|
284 |
+
stride: 1
|
285 |
+
pad: 2
|
286 |
+
dilation: 2
|
287 |
+
}
|
288 |
+
}
|
289 |
+
layer {
|
290 |
+
name: "relu5_1"
|
291 |
+
type: "ReLU"
|
292 |
+
bottom: "conv5_1"
|
293 |
+
top: "conv5_1"
|
294 |
+
}
|
295 |
+
layer {
|
296 |
+
name: "conv5_2"
|
297 |
+
type: "Convolution"
|
298 |
+
bottom: "conv5_1"
|
299 |
+
top: "conv5_2"
|
300 |
+
# param {lr_mult: 0 decay_mult: 0}
|
301 |
+
# param {lr_mult: 0 decay_mult: 0}
|
302 |
+
convolution_param {
|
303 |
+
num_output: 512
|
304 |
+
kernel_size: 3
|
305 |
+
stride: 1
|
306 |
+
pad: 2
|
307 |
+
dilation: 2
|
308 |
+
}
|
309 |
+
}
|
310 |
+
layer {
|
311 |
+
name: "relu5_2"
|
312 |
+
type: "ReLU"
|
313 |
+
bottom: "conv5_2"
|
314 |
+
top: "conv5_2"
|
315 |
+
}
|
316 |
+
layer {
|
317 |
+
name: "conv5_3"
|
318 |
+
type: "Convolution"
|
319 |
+
bottom: "conv5_2"
|
320 |
+
top: "conv5_3"
|
321 |
+
# param {lr_mult: 0 decay_mult: 0}
|
322 |
+
# param {lr_mult: 0 decay_mult: 0}
|
323 |
+
convolution_param {
|
324 |
+
num_output: 512
|
325 |
+
kernel_size: 3
|
326 |
+
stride: 1
|
327 |
+
pad: 2
|
328 |
+
dilation: 2
|
329 |
+
}
|
330 |
+
}
|
331 |
+
layer {
|
332 |
+
name: "relu5_3"
|
333 |
+
type: "ReLU"
|
334 |
+
bottom: "conv5_3"
|
335 |
+
top: "conv5_3"
|
336 |
+
}
|
337 |
+
layer {
|
338 |
+
name: "conv5_3norm"
|
339 |
+
type: "BatchNorm"
|
340 |
+
bottom: "conv5_3"
|
341 |
+
top: "conv5_3norm"
|
342 |
+
batch_norm_param{ }
|
343 |
+
param {lr_mult: 0 decay_mult: 0}
|
344 |
+
param {lr_mult: 0 decay_mult: 0}
|
345 |
+
param {lr_mult: 0 decay_mult: 0}
|
346 |
+
}
|
347 |
+
# *****************
|
348 |
+
# ***** conv6 *****
|
349 |
+
# *****************
|
350 |
+
layer {
|
351 |
+
name: "conv6_1"
|
352 |
+
type: "Convolution"
|
353 |
+
bottom: "conv5_3norm"
|
354 |
+
top: "conv6_1"
|
355 |
+
convolution_param {
|
356 |
+
num_output: 512
|
357 |
+
kernel_size: 3
|
358 |
+
pad: 2
|
359 |
+
dilation: 2
|
360 |
+
}
|
361 |
+
}
|
362 |
+
layer {
|
363 |
+
name: "relu6_1"
|
364 |
+
type: "ReLU"
|
365 |
+
bottom: "conv6_1"
|
366 |
+
top: "conv6_1"
|
367 |
+
}
|
368 |
+
layer {
|
369 |
+
name: "conv6_2"
|
370 |
+
type: "Convolution"
|
371 |
+
bottom: "conv6_1"
|
372 |
+
top: "conv6_2"
|
373 |
+
convolution_param {
|
374 |
+
num_output: 512
|
375 |
+
kernel_size: 3
|
376 |
+
pad: 2
|
377 |
+
dilation: 2
|
378 |
+
}
|
379 |
+
}
|
380 |
+
layer {
|
381 |
+
name: "relu6_2"
|
382 |
+
type: "ReLU"
|
383 |
+
bottom: "conv6_2"
|
384 |
+
top: "conv6_2"
|
385 |
+
}
|
386 |
+
layer {
|
387 |
+
name: "conv6_3"
|
388 |
+
type: "Convolution"
|
389 |
+
bottom: "conv6_2"
|
390 |
+
top: "conv6_3"
|
391 |
+
convolution_param {
|
392 |
+
num_output: 512
|
393 |
+
kernel_size: 3
|
394 |
+
pad: 2
|
395 |
+
dilation: 2
|
396 |
+
}
|
397 |
+
}
|
398 |
+
layer {
|
399 |
+
name: "relu6_3"
|
400 |
+
type: "ReLU"
|
401 |
+
bottom: "conv6_3"
|
402 |
+
top: "conv6_3"
|
403 |
+
}
|
404 |
+
layer {
|
405 |
+
name: "conv6_3norm"
|
406 |
+
type: "BatchNorm"
|
407 |
+
bottom: "conv6_3"
|
408 |
+
top: "conv6_3norm"
|
409 |
+
batch_norm_param{ }
|
410 |
+
param {lr_mult: 0 decay_mult: 0}
|
411 |
+
param {lr_mult: 0 decay_mult: 0}
|
412 |
+
param {lr_mult: 0 decay_mult: 0}
|
413 |
+
}
|
414 |
+
# *****************
|
415 |
+
# ***** conv7 *****
|
416 |
+
# *****************
|
417 |
+
layer {
|
418 |
+
name: "conv7_1"
|
419 |
+
type: "Convolution"
|
420 |
+
bottom: "conv6_3norm"
|
421 |
+
top: "conv7_1"
|
422 |
+
convolution_param {
|
423 |
+
num_output: 512
|
424 |
+
kernel_size: 3
|
425 |
+
pad: 1
|
426 |
+
dilation: 1
|
427 |
+
}
|
428 |
+
}
|
429 |
+
layer {
|
430 |
+
name: "relu7_1"
|
431 |
+
type: "ReLU"
|
432 |
+
bottom: "conv7_1"
|
433 |
+
top: "conv7_1"
|
434 |
+
}
|
435 |
+
layer {
|
436 |
+
name: "conv7_2"
|
437 |
+
type: "Convolution"
|
438 |
+
bottom: "conv7_1"
|
439 |
+
top: "conv7_2"
|
440 |
+
convolution_param {
|
441 |
+
num_output: 512
|
442 |
+
kernel_size: 3
|
443 |
+
pad: 1
|
444 |
+
dilation: 1
|
445 |
+
}
|
446 |
+
}
|
447 |
+
layer {
|
448 |
+
name: "relu7_2"
|
449 |
+
type: "ReLU"
|
450 |
+
bottom: "conv7_2"
|
451 |
+
top: "conv7_2"
|
452 |
+
}
|
453 |
+
layer {
|
454 |
+
name: "conv7_3"
|
455 |
+
type: "Convolution"
|
456 |
+
bottom: "conv7_2"
|
457 |
+
top: "conv7_3"
|
458 |
+
convolution_param {
|
459 |
+
num_output: 512
|
460 |
+
kernel_size: 3
|
461 |
+
pad: 1
|
462 |
+
dilation: 1
|
463 |
+
}
|
464 |
+
}
|
465 |
+
layer {
|
466 |
+
name: "relu7_3"
|
467 |
+
type: "ReLU"
|
468 |
+
bottom: "conv7_3"
|
469 |
+
top: "conv7_3"
|
470 |
+
}
|
471 |
+
layer {
|
472 |
+
name: "conv7_3norm"
|
473 |
+
type: "BatchNorm"
|
474 |
+
bottom: "conv7_3"
|
475 |
+
top: "conv7_3norm"
|
476 |
+
batch_norm_param{ }
|
477 |
+
param {lr_mult: 0 decay_mult: 0}
|
478 |
+
param {lr_mult: 0 decay_mult: 0}
|
479 |
+
param {lr_mult: 0 decay_mult: 0}
|
480 |
+
}
|
481 |
+
# *****************
|
482 |
+
# ***** conv8 *****
|
483 |
+
# *****************
|
484 |
+
layer {
|
485 |
+
name: "conv8_1"
|
486 |
+
type: "Deconvolution"
|
487 |
+
bottom: "conv7_3norm"
|
488 |
+
top: "conv8_1"
|
489 |
+
convolution_param {
|
490 |
+
num_output: 256
|
491 |
+
kernel_size: 4
|
492 |
+
pad: 1
|
493 |
+
dilation: 1
|
494 |
+
stride: 2
|
495 |
+
}
|
496 |
+
}
|
497 |
+
layer {
|
498 |
+
name: "relu8_1"
|
499 |
+
type: "ReLU"
|
500 |
+
bottom: "conv8_1"
|
501 |
+
top: "conv8_1"
|
502 |
+
}
|
503 |
+
layer {
|
504 |
+
name: "conv8_2"
|
505 |
+
type: "Convolution"
|
506 |
+
bottom: "conv8_1"
|
507 |
+
top: "conv8_2"
|
508 |
+
convolution_param {
|
509 |
+
num_output: 256
|
510 |
+
kernel_size: 3
|
511 |
+
pad: 1
|
512 |
+
dilation: 1
|
513 |
+
}
|
514 |
+
}
|
515 |
+
layer {
|
516 |
+
name: "relu8_2"
|
517 |
+
type: "ReLU"
|
518 |
+
bottom: "conv8_2"
|
519 |
+
top: "conv8_2"
|
520 |
+
}
|
521 |
+
layer {
|
522 |
+
name: "conv8_3"
|
523 |
+
type: "Convolution"
|
524 |
+
bottom: "conv8_2"
|
525 |
+
top: "conv8_3"
|
526 |
+
convolution_param {
|
527 |
+
num_output: 256
|
528 |
+
kernel_size: 3
|
529 |
+
pad: 1
|
530 |
+
dilation: 1
|
531 |
+
}
|
532 |
+
}
|
533 |
+
layer {
|
534 |
+
name: "relu8_3"
|
535 |
+
type: "ReLU"
|
536 |
+
bottom: "conv8_3"
|
537 |
+
top: "conv8_3"
|
538 |
+
}
|
539 |
+
# *******************
|
540 |
+
# ***** Softmax *****
|
541 |
+
# *******************
|
542 |
+
layer {
|
543 |
+
name: "conv8_313"
|
544 |
+
type: "Convolution"
|
545 |
+
bottom: "conv8_3"
|
546 |
+
top: "conv8_313"
|
547 |
+
convolution_param {
|
548 |
+
num_output: 313
|
549 |
+
kernel_size: 1
|
550 |
+
stride: 1
|
551 |
+
dilation: 1
|
552 |
+
}
|
553 |
+
}
|
554 |
+
layer {
|
555 |
+
name: "conv8_313_rh"
|
556 |
+
type: "Scale"
|
557 |
+
bottom: "conv8_313"
|
558 |
+
top: "conv8_313_rh"
|
559 |
+
scale_param {
|
560 |
+
bias_term: false
|
561 |
+
filler { type: 'constant' value: 2.606 }
|
562 |
+
}
|
563 |
+
}
|
564 |
+
layer {
|
565 |
+
name: "class8_313_rh"
|
566 |
+
type: "Softmax"
|
567 |
+
bottom: "conv8_313_rh"
|
568 |
+
top: "class8_313_rh"
|
569 |
+
}
|
570 |
+
# ********************
|
571 |
+
# ***** Decoding *****
|
572 |
+
# ********************
|
573 |
+
layer {
|
574 |
+
name: "class8_ab"
|
575 |
+
type: "Convolution"
|
576 |
+
bottom: "class8_313_rh"
|
577 |
+
top: "class8_ab"
|
578 |
+
convolution_param {
|
579 |
+
num_output: 2
|
580 |
+
kernel_size: 1
|
581 |
+
stride: 1
|
582 |
+
dilation: 1
|
583 |
+
}
|
584 |
+
}
|
585 |
+
layer {
|
586 |
+
name: "Silence"
|
587 |
+
type: "Silence"
|
588 |
+
bottom: "class8_ab"
|
589 |
+
}
|
colorization_release_v2.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5af1e602646328c792e1094f9876fe9cd4c09ac46fa886e5708a1abc89137b1
|
3 |
+
size 128946764
|
pts_in_hull.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5dec01315c34f43f1c8c089e84c45ae35d1838d8e77ed0e7ca930f79ffa450e
|
3 |
+
size 5088
|