File size: 21,418 Bytes
4943752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
"""
Attack Class
============
"""

from collections import OrderedDict
from typing import List, Union

import lru
import torch

import textattack
from textattack.attack_results import (
    FailedAttackResult,
    MaximizedAttackResult,
    SkippedAttackResult,
    SuccessfulAttackResult,
)
from textattack.constraints import Constraint, PreTransformationConstraint
from textattack.goal_function_results import GoalFunctionResultStatus
from textattack.goal_functions import GoalFunction
from textattack.models.wrappers import ModelWrapper
from textattack.search_methods import SearchMethod
from textattack.shared import AttackedText, utils
from textattack.transformations import CompositeTransformation, Transformation


class Attack:
    """An attack generates adversarial examples on text.

    An attack is comprised of a goal function, constraints, transformation, and a search method. Use :meth:`attack` method to attack one sample at a time.

    Args:
        goal_function (:class:`~textattack.goal_functions.GoalFunction`):
            A function for determining how well a perturbation is doing at achieving the attack's goal.
        constraints (list of :class:`~textattack.constraints.Constraint` or :class:`~textattack.constraints.PreTransformationConstraint`):
            A list of constraints to add to the attack, defining which perturbations are valid.
        transformation (:class:`~textattack.transformations.Transformation`):
            The transformation applied at each step of the attack.
        search_method (:class:`~textattack.search_methods.SearchMethod`):
            The method for exploring the search space of possible perturbations
        transformation_cache_size (:obj:`int`, `optional`, defaults to :obj:`2**15`):
            The number of items to keep in the transformations cache
        constraint_cache_size (:obj:`int`, `optional`, defaults to :obj:`2**15`):
            The number of items to keep in the constraints cache

    Example::

        >>> import textattack
        >>> import transformers

        >>> # Load model, tokenizer, and model_wrapper
        >>> model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb")
        >>> tokenizer = transformers.AutoTokenizer.from_pretrained("textattack/bert-base-uncased-imdb")
        >>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)

        >>> # Construct our four components for `Attack`
        >>> from textattack.constraints.pre_transformation import RepeatModification, StopwordModification
        >>> from textattack.constraints.semantics import WordEmbeddingDistance

        >>> goal_function = textattack.goal_functions.UntargetedClassification(model_wrapper)
        >>> constraints = [
        ...     RepeatModification(),
        ...     StopwordModification()
        ...     WordEmbeddingDistance(min_cos_sim=0.9)
        ... ]
        >>> transformation = WordSwapEmbedding(max_candidates=50)
        >>> search_method = GreedyWordSwapWIR(wir_method="delete")

        >>> # Construct the actual attack
        >>> attack = Attack(goal_function, constraints, transformation, search_method)

        >>> input_text = "I really enjoyed the new movie that came out last month."
        >>> label = 1 #Positive
        >>> attack_result = attack.attack(input_text, label)
    """

    def __init__(
        self,
        goal_function: GoalFunction,
        constraints: List[Union[Constraint, PreTransformationConstraint]],
        transformation: Transformation,
        search_method: SearchMethod,
        transformation_cache_size=2**15,
        constraint_cache_size=2**15,
    ):
        """Initialize an attack object.

        Attacks can be run multiple times.
        """
        assert isinstance(
            goal_function, GoalFunction
        ), f"`goal_function` must be of type `textattack.goal_functions.GoalFunction`, but got type `{type(goal_function)}`."
        assert isinstance(
            constraints, list
        ), "`constraints` must be a list of `textattack.constraints.Constraint` or `textattack.constraints.PreTransformationConstraint`."
        for c in constraints:
            assert isinstance(
                c, (Constraint, PreTransformationConstraint)
            ), "`constraints` must be a list of `textattack.constraints.Constraint` or `textattack.constraints.PreTransformationConstraint`."
        assert isinstance(
            transformation, Transformation
        ), f"`transformation` must be of type `textattack.transformations.Transformation`, but got type `{type(transformation)}`."
        assert isinstance(
            search_method, SearchMethod
        ), f"`search_method` must be of type `textattack.search_methods.SearchMethod`, but got type `{type(search_method)}`."

        self.goal_function = goal_function
        self.search_method = search_method
        self.transformation = transformation
        self.is_black_box = (
            getattr(transformation, "is_black_box", True) and search_method.is_black_box
        )

        if not self.search_method.check_transformation_compatibility(
            self.transformation
        ):
            raise ValueError(
                f"SearchMethod {self.search_method} incompatible with transformation {self.transformation}"
            )

        self.constraints = []
        self.pre_transformation_constraints = []
        for constraint in constraints:
            if isinstance(
                constraint,
                textattack.constraints.PreTransformationConstraint,
            ):
                self.pre_transformation_constraints.append(constraint)
            else:
                self.constraints.append(constraint)

        # Check if we can use transformation cache for our transformation.
        if not self.transformation.deterministic:
            self.use_transformation_cache = False
        elif isinstance(self.transformation, CompositeTransformation):
            self.use_transformation_cache = True
            for t in self.transformation.transformations:
                if not t.deterministic:
                    self.use_transformation_cache = False
                    break
        else:
            self.use_transformation_cache = True
        self.transformation_cache_size = transformation_cache_size
        self.transformation_cache = lru.LRU(transformation_cache_size)

        self.constraint_cache_size = constraint_cache_size
        self.constraints_cache = lru.LRU(constraint_cache_size)

        # Give search method access to functions for getting transformations and evaluating them
        self.search_method.get_transformations = self.get_transformations
        # Give search method access to self.goal_function for model query count, etc.
        self.search_method.goal_function = self.goal_function
        # The search method only needs access to the first argument. The second is only used
        # by the attack class when checking whether to skip the sample
        self.search_method.get_goal_results = self.goal_function.get_results

        # Give search method access to get indices which need to be ordered / searched
        self.search_method.get_indices_to_order = self.get_indices_to_order

        self.search_method.filter_transformations = self.filter_transformations

    def clear_cache(self, recursive=True):
        self.constraints_cache.clear()
        if self.use_transformation_cache:
            self.transformation_cache.clear()
        if recursive:
            self.goal_function.clear_cache()
            for constraint in self.constraints:
                if hasattr(constraint, "clear_cache"):
                    constraint.clear_cache()

    def cpu_(self):
        """Move any `torch.nn.Module` models that are part of Attack to CPU."""
        visited = set()

        def to_cpu(obj):
            visited.add(id(obj))
            if isinstance(obj, torch.nn.Module):
                obj.cpu()
            elif isinstance(
                obj,
                (
                    Attack,
                    GoalFunction,
                    Transformation,
                    SearchMethod,
                    Constraint,
                    PreTransformationConstraint,
                    ModelWrapper,
                ),
            ):
                for key in obj.__dict__:
                    s_obj = obj.__dict__[key]
                    if id(s_obj) not in visited:
                        to_cpu(s_obj)
            elif isinstance(obj, (list, tuple)):
                for item in obj:
                    if id(item) not in visited and isinstance(
                        item, (Transformation, Constraint, PreTransformationConstraint)
                    ):
                        to_cpu(item)

        to_cpu(self)

    def cuda_(self):
        """Move any `torch.nn.Module` models that are part of Attack to GPU."""
        visited = set()

        def to_cuda(obj):
            visited.add(id(obj))
            if isinstance(obj, torch.nn.Module):
                obj.to(textattack.shared.utils.device)
            elif isinstance(
                obj,
                (
                    Attack,
                    GoalFunction,
                    Transformation,
                    SearchMethod,
                    Constraint,
                    PreTransformationConstraint,
                    ModelWrapper,
                ),
            ):
                for key in obj.__dict__:
                    s_obj = obj.__dict__[key]
                    if id(s_obj) not in visited:
                        to_cuda(s_obj)
            elif isinstance(obj, (list, tuple)):
                for item in obj:
                    if id(item) not in visited and isinstance(
                        item, (Transformation, Constraint, PreTransformationConstraint)
                    ):
                        to_cuda(item)

        to_cuda(self)

    def get_indices_to_order(self, current_text, **kwargs):
        """Applies ``pre_transformation_constraints`` to ``text`` to get all
        the indices that can be used to search and order.

        Args:
            current_text: The current ``AttackedText`` for which we need to find indices are eligible to be ordered.
        Returns:
            The length and the filtered list of indices which search methods can use to search/order.
        """

        indices_to_order = self.transformation(
            current_text,
            pre_transformation_constraints=self.pre_transformation_constraints,
            return_indices=True,
            **kwargs,
        )

        len_text = len(indices_to_order)

        # Convert indices_to_order to list for easier shuffling later
        return len_text, list(indices_to_order)

    def _get_transformations_uncached(self, current_text, original_text=None, **kwargs):
        """Applies ``self.transformation`` to ``text``, then filters the list
        of possible transformations through the applicable constraints.

        Args:
            current_text: The current ``AttackedText`` on which to perform the transformations.
            original_text: The original ``AttackedText`` from which the attack started.
        Returns:
            A filtered list of transformations where each transformation matches the constraints
        """
        transformed_texts = self.transformation(
            current_text,
            pre_transformation_constraints=self.pre_transformation_constraints,
            **kwargs,
        )

        return transformed_texts

    def get_transformations(self, current_text, original_text=None, **kwargs):
        """Applies ``self.transformation`` to ``text``, then filters the list
        of possible transformations through the applicable constraints.

        Args:
            current_text: The current ``AttackedText`` on which to perform the transformations.
            original_text: The original ``AttackedText`` from which the attack started.
        Returns:
            A filtered list of transformations where each transformation matches the constraints
        """
        if not self.transformation:
            raise RuntimeError(
                "Cannot call `get_transformations` without a transformation."
            )

        if self.use_transformation_cache:
            cache_key = tuple([current_text] + sorted(kwargs.items()))
            if utils.hashable(cache_key) and cache_key in self.transformation_cache:
                # promote transformed_text to the top of the LRU cache
                self.transformation_cache[cache_key] = self.transformation_cache[
                    cache_key
                ]
                transformed_texts = list(self.transformation_cache[cache_key])
            else:
                transformed_texts = self._get_transformations_uncached(
                    current_text, original_text, **kwargs
                )
                if utils.hashable(cache_key):
                    self.transformation_cache[cache_key] = tuple(transformed_texts)
        else:
            transformed_texts = self._get_transformations_uncached(
                current_text, original_text, **kwargs
            )

        return self.filter_transformations(
            transformed_texts, current_text, original_text
        )

    def _filter_transformations_uncached(
        self, transformed_texts, current_text, original_text=None
    ):
        """Filters a list of potential transformed texts based on
        ``self.constraints``

        Args:
            transformed_texts: A list of candidate transformed ``AttackedText`` to filter.
            current_text: The current ``AttackedText`` on which the transformation was applied.
            original_text: The original ``AttackedText`` from which the attack started.
        """
        filtered_texts = transformed_texts[:]
        for C in self.constraints:
            if len(filtered_texts) == 0:
                break
            if C.compare_against_original:
                if not original_text:
                    raise ValueError(
                        f"Missing `original_text` argument when constraint {type(C)} is set to compare against `original_text`"
                    )

                filtered_texts = C.call_many(filtered_texts, original_text)
            else:
                filtered_texts = C.call_many(filtered_texts, current_text)
        # Default to false for all original transformations.
        for original_transformed_text in transformed_texts:
            self.constraints_cache[(current_text, original_transformed_text)] = False
        # Set unfiltered transformations to True in the cache.
        for filtered_text in filtered_texts:
            self.constraints_cache[(current_text, filtered_text)] = True
        return filtered_texts

    def filter_transformations(
        self, transformed_texts, current_text, original_text=None
    ):
        """Filters a list of potential transformed texts based on
        ``self.constraints`` Utilizes an LRU cache to attempt to avoid
        recomputing common transformations.

        Args:
            transformed_texts: A list of candidate transformed ``AttackedText`` to filter.
            current_text: The current ``AttackedText`` on which the transformation was applied.
            original_text: The original ``AttackedText`` from which the attack started.
        """
        # Remove any occurences of current_text in transformed_texts
        transformed_texts = [
            t for t in transformed_texts if t.text != current_text.text
        ]
        # Populate cache with transformed_texts
        uncached_texts = []
        filtered_texts = []
        for transformed_text in transformed_texts:
            if (current_text, transformed_text) not in self.constraints_cache:
                uncached_texts.append(transformed_text)
            else:
                # promote transformed_text to the top of the LRU cache
                self.constraints_cache[
                    (current_text, transformed_text)
                ] = self.constraints_cache[(current_text, transformed_text)]
                if self.constraints_cache[(current_text, transformed_text)]:
                    filtered_texts.append(transformed_text)
        filtered_texts += self._filter_transformations_uncached(
            uncached_texts, current_text, original_text=original_text
        )
        # Sort transformations to ensure order is preserved between runs
        filtered_texts.sort(key=lambda t: t.text)
        return filtered_texts

    def _attack(self, initial_result):
        """Calls the ``SearchMethod`` to perturb the ``AttackedText`` stored in
        ``initial_result``.

        Args:
            initial_result: The initial ``GoalFunctionResult`` from which to perturb.

        Returns:
            A ``SuccessfulAttackResult``, ``FailedAttackResult``,
                or ``MaximizedAttackResult``.
        """
        final_result = self.search_method(initial_result)
        self.clear_cache()
        if final_result.goal_status == GoalFunctionResultStatus.SUCCEEDED:
            result = SuccessfulAttackResult(
                initial_result,
                final_result,
            )
        elif final_result.goal_status == GoalFunctionResultStatus.SEARCHING:
            result = FailedAttackResult(
                initial_result,
                final_result,
            )
        elif final_result.goal_status == GoalFunctionResultStatus.MAXIMIZING:
            result = MaximizedAttackResult(
                initial_result,
                final_result,
            )
        else:
            raise ValueError(f"Unrecognized goal status {final_result.goal_status}")
        return result

    def attack(self, example, ground_truth_output):
        """Attack a single example.

        Args:
            example (:obj:`str`, :obj:`OrderedDict[str, str]` or :class:`~textattack.shared.AttackedText`):
                Example to attack. It can be a single string or an `OrderedDict` where
                keys represent the input fields (e.g. "premise", "hypothesis") and the values are the actual input textx.
                Also accepts :class:`~textattack.shared.AttackedText` that wraps around the input.
            ground_truth_output(:obj:`int`, :obj:`float` or :obj:`str`):
                Ground truth output of `example`.
                For classification tasks, it should be an integer representing the ground truth label.
                For regression tasks (e.g. STS), it should be the target value.
                For seq2seq tasks (e.g. translation), it should be the target string.
        Returns:
            :class:`~textattack.attack_results.AttackResult` that represents the result of the attack.
        """
        assert isinstance(
            example, (str, OrderedDict, AttackedText)
        ), "`example` must either be `str`, `collections.OrderedDict`, `textattack.shared.AttackedText`."
        if isinstance(example, (str, OrderedDict)):
            example = AttackedText(example)

        assert isinstance(
            ground_truth_output, (int, str)
        ), "`ground_truth_output` must either be `str` or `int`."
        goal_function_result, _ = self.goal_function.init_attack_example(
            example, ground_truth_output
        )
        if goal_function_result.goal_status == GoalFunctionResultStatus.SKIPPED:
            return SkippedAttackResult(goal_function_result)
        else:
            result = self._attack(goal_function_result)
            return result

    def __repr__(self):
        """Prints attack parameters in a human-readable string.

        Inspired by the readability of printing PyTorch nn.Modules:
        https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/module.py
        """
        main_str = "Attack" + "("
        lines = []

        lines.append(utils.add_indent(f"(search_method): {self.search_method}", 2))
        # self.goal_function
        lines.append(utils.add_indent(f"(goal_function):  {self.goal_function}", 2))
        # self.transformation
        lines.append(utils.add_indent(f"(transformation):  {self.transformation}", 2))
        # self.constraints
        constraints_lines = []
        constraints = self.constraints + self.pre_transformation_constraints
        if len(constraints):
            for i, constraint in enumerate(constraints):
                constraints_lines.append(utils.add_indent(f"({i}): {constraint}", 2))
            constraints_str = utils.add_indent("\n" + "\n".join(constraints_lines), 2)
        else:
            constraints_str = "None"
        lines.append(utils.add_indent(f"(constraints): {constraints_str}", 2))
        # self.is_black_box
        lines.append(utils.add_indent(f"(is_black_box):  {self.is_black_box}", 2))
        main_str += "\n  " + "\n  ".join(lines) + "\n"
        main_str += ")"
        return main_str

    def __getstate__(self):
        state = self.__dict__.copy()
        state["transformation_cache"] = None
        state["constraints_cache"] = None
        return state

    def __setstate__(self, state):
        self.__dict__ = state
        self.transformation_cache = lru.LRU(self.transformation_cache_size)
        self.constraints_cache = lru.LRU(self.constraint_cache_size)

    __str__ = __repr__