File size: 10,711 Bytes
4943752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
Augmenter Class
===================
"""
import random

import tqdm

from textattack.constraints import PreTransformationConstraint
from textattack.metrics.quality_metrics import Perplexity, USEMetric
from textattack.shared import AttackedText, utils


class Augmenter:
    """A class for performing data augmentation using TextAttack.

    Returns all possible transformations for a given string. Currently only
        supports transformations which are word swaps.

    Args:
        transformation (textattack.Transformation): the transformation
            that suggests new texts from an input.
        constraints: (list(textattack.Constraint)): constraints
            that each transformation must meet
        pct_words_to_swap: (float): [0., 1.], percentage of words to swap per augmented example
        transformations_per_example: (int): Maximum number of augmentations
            per input
        high_yield: Whether to return a set of augmented texts that will be relatively similar, or to return only a
            single one.
        fast_augment: Stops additional transformation runs when number of successful augmentations reaches
            transformations_per_example
        advanced_metrics: return perplexity and USE Score of augmentation

    Example::
        >>> from textattack.transformations import WordSwapRandomCharacterDeletion, WordSwapQWERTY, CompositeTransformation
        >>> from textattack.constraints.pre_transformation import RepeatModification, StopwordModification
        >>> from textattack.augmentation import Augmenter

        >>> transformation = CompositeTransformation([WordSwapRandomCharacterDeletion(), WordSwapQWERTY()])
        >>> constraints = [RepeatModification(), StopwordModification()]

        >>> # initiate augmenter
        >>> augmenter = Augmenter(
        ...     transformation=transformation,
        ...     constraints=constraints,
        ...     pct_words_to_swap=0.5,
        ...     transformations_per_example=3
        ... )

        >>> # additional parameters can be modified if not during initiation
        >>> augmenter.enable_advanced_metrics = True
        >>> augmenter.fast_augment = True
        >>> augmenter.high_yield = True

        >>> s = 'What I cannot create, I do not understand.'
        >>> results = augmenter.augment(s)

        >>> augmentations = results[0]
        >>> perplexity_score = results[1]
        >>> use_score = results[2]
    """

    def __init__(
        self,
        transformation,
        constraints=[],
        pct_words_to_swap=0.1,
        transformations_per_example=1,
        high_yield=False,
        fast_augment=False,
        enable_advanced_metrics=False,
    ):
        assert (
            transformations_per_example > 0
        ), "transformations_per_example must be a positive integer"
        assert 0.0 <= pct_words_to_swap <= 1.0, "pct_words_to_swap must be in [0., 1.]"
        self.transformation = transformation
        self.pct_words_to_swap = pct_words_to_swap
        self.transformations_per_example = transformations_per_example

        self.constraints = []
        self.pre_transformation_constraints = []
        self.high_yield = high_yield
        self.fast_augment = fast_augment
        self.advanced_metrics = enable_advanced_metrics
        for constraint in constraints:
            if isinstance(constraint, PreTransformationConstraint):
                self.pre_transformation_constraints.append(constraint)
            else:
                self.constraints.append(constraint)

    def _filter_transformations(self, transformed_texts, current_text, original_text):
        """Filters a list of ``AttackedText`` objects to include only the ones
        that pass ``self.constraints``."""
        for C in self.constraints:
            if len(transformed_texts) == 0:
                break
            if C.compare_against_original:
                if not original_text:
                    raise ValueError(
                        f"Missing `original_text` argument when constraint {type(C)} is set to compare against "
                        f"`original_text` "
                    )

                transformed_texts = C.call_many(transformed_texts, original_text)
            else:
                transformed_texts = C.call_many(transformed_texts, current_text)
        return transformed_texts

    def augment(self, text):
        """Returns all possible augmentations of ``text`` according to
        ``self.transformation``."""
        attacked_text = AttackedText(text)
        original_text = attacked_text
        all_transformed_texts = set()
        num_words_to_swap = max(
            int(self.pct_words_to_swap * len(attacked_text.words)), 1
        )
        augmentation_results = []
        for _ in range(self.transformations_per_example):
            current_text = attacked_text
            words_swapped = len(current_text.attack_attrs["modified_indices"])

            while words_swapped < num_words_to_swap:
                transformed_texts = self.transformation(
                    current_text, self.pre_transformation_constraints
                )

                # Get rid of transformations we already have
                transformed_texts = [
                    t for t in transformed_texts if t not in all_transformed_texts
                ]

                # Filter out transformations that don't match the constraints.
                transformed_texts = self._filter_transformations(
                    transformed_texts, current_text, original_text
                )

                # if there's no more transformed texts after filter, terminate
                if not len(transformed_texts):
                    break

                # look for all transformed_texts that has enough words swapped
                if self.high_yield or self.fast_augment:
                    ready_texts = [
                        text
                        for text in transformed_texts
                        if len(text.attack_attrs["modified_indices"])
                        >= num_words_to_swap
                    ]
                    for text in ready_texts:
                        all_transformed_texts.add(text)
                    unfinished_texts = [
                        text for text in transformed_texts if text not in ready_texts
                    ]

                    if len(unfinished_texts):
                        current_text = random.choice(unfinished_texts)
                    else:
                        # no need for further augmentations if all of transformed_texts meet `num_words_to_swap`
                        break
                else:
                    current_text = random.choice(transformed_texts)

                # update words_swapped based on modified indices
                words_swapped = max(
                    len(current_text.attack_attrs["modified_indices"]),
                    words_swapped + 1,
                )

            all_transformed_texts.add(current_text)

            # when with fast_augment, terminate early if there're enough successful augmentations
            if (
                self.fast_augment
                and len(all_transformed_texts) >= self.transformations_per_example
            ):
                if not self.high_yield:
                    all_transformed_texts = random.sample(
                        all_transformed_texts, self.transformations_per_example
                    )
                break

        perturbed_texts = sorted([at.printable_text() for at in all_transformed_texts])

        if self.advanced_metrics:
            for transformed_texts in all_transformed_texts:
                augmentation_results.append(
                    AugmentationResult(original_text, transformed_texts)
                )
            perplexity_stats = Perplexity().calculate(augmentation_results)
            use_stats = USEMetric().calculate(augmentation_results)
            return perturbed_texts, perplexity_stats, use_stats

        return perturbed_texts

    def augment_many(self, text_list, show_progress=False):
        """Returns all possible augmentations of a list of strings according to
        ``self.transformation``.

        Args:
            text_list (list(string)): a list of strings for data augmentation
        Returns a list(string) of augmented texts.
        :param show_progress: show process during augmentation
        """
        if show_progress:
            text_list = tqdm.tqdm(text_list, desc="Augmenting data...")
        return [self.augment(text) for text in text_list]

    def augment_text_with_ids(self, text_list, id_list, show_progress=True):
        """Supplements a list of text with more text data.

        Returns the augmented text along with the corresponding IDs for
        each augmented example.
        """
        if len(text_list) != len(id_list):
            raise ValueError("List of text must be same length as list of IDs")
        if self.transformations_per_example == 0:
            return text_list, id_list
        all_text_list = []
        all_id_list = []
        if show_progress:
            text_list = tqdm.tqdm(text_list, desc="Augmenting data...")
        for text, _id in zip(text_list, id_list):
            all_text_list.append(text)
            all_id_list.append(_id)
            augmented_texts = self.augment(text)
            all_text_list.extend
            all_text_list.extend([text] + augmented_texts)
            all_id_list.extend([_id] * (1 + len(augmented_texts)))
        return all_text_list, all_id_list

    def __repr__(self):
        main_str = "Augmenter" + "("
        lines = []
        # self.transformation
        lines.append(utils.add_indent(f"(transformation):  {self.transformation}", 2))
        # self.constraints
        constraints_lines = []
        constraints = self.constraints + self.pre_transformation_constraints
        if len(constraints):
            for i, constraint in enumerate(constraints):
                constraints_lines.append(utils.add_indent(f"({i}): {constraint}", 2))
            constraints_str = utils.add_indent("\n" + "\n".join(constraints_lines), 2)
        else:
            constraints_str = "None"
        lines.append(utils.add_indent(f"(constraints): {constraints_str}", 2))
        main_str += "\n  " + "\n  ".join(lines) + "\n"
        main_str += ")"
        return main_str


class AugmentationResult:
    def __init__(self, text1, text2):
        self.original_result = self.tempResult(text1)
        self.perturbed_result = self.tempResult(text2)

    class tempResult:
        def __init__(self, text):
            self.attacked_text = text