anzorq commited on
Commit
bce882a
·
1 Parent(s): 2cc95c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -54
app.py CHANGED
@@ -127,82 +127,113 @@ def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height
127
 
128
  try:
129
  if img is not None:
130
- return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator), f"Done. Seed: {seed}"
131
  else:
132
- return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator), f"Done. Seed: {seed}"
133
  except Exception as e:
134
  return None, error_str(e)
135
 
136
- def load_model(model_path, mode):
 
 
 
137
  global last_mode
138
  global pipe
139
  global current_model_path
140
-
141
- if model_path != current_model_path or last_mode != mode:
142
  current_model_path = model_path
143
- update_state(f"Loading {current_model.name} {mode} model...")
144
 
145
- model_class = StableDiffusionPipeline if mode == "txt2img" else StableDiffusionImg2ImgPipeline
 
146
  if is_colab or current_model == custom_model:
147
- pipe = model_class.from_pretrained(
148
- current_model_path,
149
- torch_dtype=torch.float16,
150
- scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
151
- safety_checker=lambda images, clip_input: (images, False)
152
- )
153
  else:
154
- pipe = model_class.from_pretrained(
155
- current_model_path,
156
- torch_dtype=torch.float16,
157
- scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
158
- )
 
 
159
 
160
  if torch.cuda.is_available():
161
- pipe = pipe.to("cuda")
162
- pipe.enable_xformers_memory_efficient_attention()
 
163
 
164
- last_mode = mode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
- def process_image(img, width, height):
167
- ratio = min(height / img.height, width / img.width)
168
- return img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
169
 
 
170
 
171
- def inference_image(model_path, prompt, mode, *args, **kwargs):
172
- print(f"{datetime.datetime.now()} {mode}, model: {model_path}")
173
  global pipe
174
- load_model(model_path, mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  prompt = current_model.prefix + prompt
 
 
176
  result = pipe(
177
  prompt,
178
- *args,
179
- **kwargs,
180
- callback=pipe_callback
181
- )
182
- return replace_nsfw_images(result)
183
-
184
- def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator):
185
- return inference_image(model_path, prompt, "txt2img",
186
- negative_prompt=neg_prompt,
187
- num_images_per_prompt=n_images,
188
- num_inference_steps=int(steps),
189
- guidance_scale=guidance,
190
- width=width,
191
- height=height,
192
- generator=generator
193
- )
194
-
195
- def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator):
196
- img = process_image(img, width, height)
197
- return inference_image(model_path, prompt, "img2img",
198
- negative_prompt=neg_prompt,
199
  num_images_per_prompt=n_images,
200
- image=img,
201
- num_inference_steps=int(steps),
202
- strength=strength,
203
- guidance_scale=guidance,
204
- generator=generator
205
- )
 
 
 
 
 
 
206
 
207
  def replace_nsfw_images(results):
208
 
 
127
 
128
  try:
129
  if img is not None:
130
+ return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
131
  else:
132
+ return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
133
  except Exception as e:
134
  return None, error_str(e)
135
 
136
+ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
137
+
138
+ print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
139
+
140
  global last_mode
141
  global pipe
142
  global current_model_path
143
+ if model_path != current_model_path or last_mode != "txt2img":
 
144
  current_model_path = model_path
 
145
 
146
+ update_state(f"Loading {current_model.name} text-to-image model...")
147
+
148
  if is_colab or current_model == custom_model:
149
+ pipe = StableDiffusionPipeline.from_pretrained(
150
+ current_model_path,
151
+ torch_dtype=torch.float16,
152
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
153
+ safety_checker=lambda images, clip_input: (images, False)
154
+ )
155
  else:
156
+ pipe = StableDiffusionPipeline.from_pretrained(
157
+ current_model_path,
158
+ torch_dtype=torch.float16,
159
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
160
+ )
161
+ # pipe = pipe.to("cpu")
162
+ # pipe = current_model.pipe_t2i
163
 
164
  if torch.cuda.is_available():
165
+ pipe = pipe.to("cuda")
166
+ pipe.enable_xformers_memory_efficient_attention()
167
+ last_mode = "txt2img"
168
 
169
+ prompt = current_model.prefix + prompt
170
+ result = pipe(
171
+ prompt,
172
+ negative_prompt = neg_prompt,
173
+ num_images_per_prompt=n_images,
174
+ num_inference_steps = int(steps),
175
+ guidance_scale = guidance,
176
+ width = width,
177
+ height = height,
178
+ generator = generator,
179
+ callback=pipe_callback)
180
+
181
+ # update_state(f"Done. Seed: {seed}")
182
+
183
+ return replace_nsfw_images(result)
184
 
185
+ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
 
 
186
 
187
+ print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
188
 
189
+ global last_mode
 
190
  global pipe
191
+ global current_model_path
192
+ if model_path != current_model_path or last_mode != "img2img":
193
+ current_model_path = model_path
194
+
195
+ update_state(f"Loading {current_model.name} image-to-image model...")
196
+
197
+ if is_colab or current_model == custom_model:
198
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
199
+ current_model_path,
200
+ torch_dtype=torch.float16,
201
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
202
+ safety_checker=lambda images, clip_input: (images, False)
203
+ )
204
+ else:
205
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
206
+ current_model_path,
207
+ torch_dtype=torch.float16,
208
+ scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
209
+ )
210
+ # pipe = pipe.to("cpu")
211
+ # pipe = current_model.pipe_i2i
212
+
213
+ if torch.cuda.is_available():
214
+ pipe = pipe.to("cuda")
215
+ pipe.enable_xformers_memory_efficient_attention()
216
+ last_mode = "img2img"
217
+
218
  prompt = current_model.prefix + prompt
219
+ ratio = min(height / img.height, width / img.width)
220
+ img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
221
  result = pipe(
222
  prompt,
223
+ negative_prompt = neg_prompt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
  num_images_per_prompt=n_images,
225
+ image = img,
226
+ num_inference_steps = int(steps),
227
+ strength = strength,
228
+ guidance_scale = guidance,
229
+ # width = width,
230
+ # height = height,
231
+ generator = generator,
232
+ callback=pipe_callback)
233
+
234
+ # update_state(f"Done. Seed: {seed}")
235
+
236
+ return replace_nsfw_images(result)
237
 
238
  def replace_nsfw_images(results):
239