Add python file and requirements
Browse files- app.py +71 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
HEXACO = [
|
6 |
+
"honesty-humility",
|
7 |
+
"emotionality",
|
8 |
+
"extraversion",
|
9 |
+
"agreeableness",
|
10 |
+
"conscientiousness",
|
11 |
+
"openness to experience"
|
12 |
+
]
|
13 |
+
|
14 |
+
def netScores(tagList: list, sequence_to_classify: str, modelName: str) -> dict:
|
15 |
+
classifier = pipeline("zero-shot-classification", model=modelName)
|
16 |
+
hypothesis_template_pos = "This example is {}"
|
17 |
+
hypothesis_template_neg = "This example is not {}"
|
18 |
+
output_pos = classifier(sequence_to_classify, tagList, hypothesis_template=hypothesis_template_pos, multi_label=True)
|
19 |
+
output_neg = classifier(sequence_to_classify, tagList, hypothesis_template=hypothesis_template_neg, multi_label=True)
|
20 |
+
|
21 |
+
positive_scores = {}
|
22 |
+
for x in range(len(tagList)):
|
23 |
+
positive_scores[output_pos["labels"][x]] = output_pos["scores"][x]
|
24 |
+
|
25 |
+
negative_scores = {}
|
26 |
+
for x in range(len(tagList)):
|
27 |
+
negative_scores[output_neg["labels"][x]] = output_neg["scores"][x]
|
28 |
+
|
29 |
+
pos_neg_scores = {}
|
30 |
+
for tag in tagList:
|
31 |
+
pos_neg_scores[tag] = [positive_scores[tag],negative_scores[tag]]
|
32 |
+
|
33 |
+
net_scores = {}
|
34 |
+
for tag in tagList:
|
35 |
+
net_scores[tag] = positive_scores[tag]-negative_scores[tag]
|
36 |
+
|
37 |
+
net_scores = dict(sorted(net_scores.items(), key=lambda x:x[1], reverse=True))
|
38 |
+
|
39 |
+
return net_scores
|
40 |
+
|
41 |
+
def scoresMatch(tagList: list, scoresA: dict, scoresB: dict):
|
42 |
+
maxDistance = 2*np.sqrt(len(tagList))
|
43 |
+
differenceSquares = []
|
44 |
+
for tag in tagList:
|
45 |
+
difference = (scoresA[tag] - scoresB[tag])
|
46 |
+
differenceSquare = difference*difference
|
47 |
+
differenceSquares.append(differenceSquare)
|
48 |
+
distance = np.sqrt(np.sum(differenceSquares))
|
49 |
+
percentDifference = distance/maxDistance
|
50 |
+
|
51 |
+
return 1-percentDifference
|
52 |
+
|
53 |
+
def compareTextAndLabels (userText, userLabels):
|
54 |
+
userLabelsArray = userLabels.split(",")
|
55 |
+
labelsMatches = {}
|
56 |
+
|
57 |
+
textScores = netScores (HEXACO, userText, 'akhtet/mDeBERTa-v3-base-myXNLI')
|
58 |
+
for label in userLabelsArray:
|
59 |
+
labelScores = netScores (HEXACO, label, 'akhtet/mDeBERTa-v3-base-myXNLI')
|
60 |
+
labelMatch = scoresMatch(HEXACO, textScores, labelScores)
|
61 |
+
labelsMatches[label] = str(np.round(labelMatch*100,2))+"%"
|
62 |
+
|
63 |
+
return labelsMatches
|
64 |
+
|
65 |
+
|
66 |
+
demo = gr.Interface(
|
67 |
+
fn=compareTextAndLabels,
|
68 |
+
inputs=[gr.Textbox(label="Text"), gr.Textbox(label="Labels (separated by commas)")],
|
69 |
+
outputs=[gr.Textbox(label="Label Scores")],
|
70 |
+
)
|
71 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
numpy
|
3 |
+
torch --index-url https://download.pytorch.org/whl/cpu
|
4 |
+
torchvision --index-url https://download.pytorch.org/whl/cpu
|
5 |
+
torchaudio --index-url https://download.pytorch.org/whl/cpu
|