File size: 41,205 Bytes
8592444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6509cb9
 
1a3c41a
8592444
 
 
1a3c41a
 
 
8592444
 
dd04a54
8592444
 
 
 
 
 
 
1a3c41a
8592444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a3c41a
 
8592444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd04a54
 
8592444
 
1a3c41a
8592444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8269fe1
8592444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8269fe1
8592444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a3c41a
 
 
 
8592444
 
 
 
1a3c41a
 
 
8592444
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
import io
import os
import ssl
from contextlib import closing
from typing import Optional, Tuple
import datetime

import boto3
import gradio as gr
import requests

# UNCOMMENT TO USE WHISPER
import warnings
import whisper

from langchain import ConversationChain, LLMChain

from langchain.agents import load_tools, initialize_agent
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from threading import Lock

# Console to variable
from io import StringIO
import sys
import re

from openai.error import AuthenticationError, InvalidRequestError, RateLimitError

# Pertains to Express-inator functionality
from langchain.prompts import PromptTemplate

from polly_utils import PollyVoiceData, NEURAL_ENGINE
from azure_utils import AzureVoiceData

# Pertains to question answering functionality
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.docstore.document import Document
from langchain.chains.question_answering import load_qa_chain

# os.environ["NEWS_API_KEY"] = ""
# os.environ["TMDB_BEARER_TOKEN"] = ""

news_api_key = os.environ["NEWS_API_KEY"]
tmdb_bearer_token = os.environ["TMDB_BEARER_TOKEN"]

TOOLS_LIST = ['serpapi', 'wolfram-alpha', 'pal-math', 'pal-colored-objects', 'news-api']  #'google-search','news-api','tmdb-api','open-meteo-api'
TOOLS_DEFAULT_LIST = ['serpapi', 'wolfram-alpha', 'pal-math', 'pal-colored-objects', 'news-api']
BUG_FOUND_MSG = "Congratulations, you've found a bug in this application!"
# AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. It is not necessary to hit a button or key after pasting it."
AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. "
MAX_TOKENS = 2048

LOOPING_TALKING_HEAD = "videos/Masahiro.mp4"
TALKING_HEAD_WIDTH = "192"
MAX_TALKING_HEAD_TEXT_LENGTH = 155

# Pertains to Express-inator functionality
NUM_WORDS_DEFAULT = 0
MAX_WORDS = 400
FORMALITY_DEFAULT = "N/A"
TEMPERATURE_DEFAULT = 0.5
EMOTION_DEFAULT = "N/A"
LANG_LEVEL_DEFAULT = "N/A"
TRANSLATE_TO_DEFAULT = "N/A"
LITERARY_STYLE_DEFAULT = "N/A"
PROMPT_TEMPLATE = PromptTemplate(
    input_variables=["original_words", "num_words", "formality", "emotions", "lang_level", "translate_to",
                     "literary_style"],
    template="Restate {num_words}{formality}{emotions}{lang_level}{translate_to}{literary_style}the following: \n{original_words}\n",
)

POLLY_VOICE_DATA = PollyVoiceData()
AZURE_VOICE_DATA = AzureVoiceData()

# Pertains to WHISPER functionality
WHISPER_DETECT_LANG = "Detect language"


# UNCOMMENT TO USE WHISPER
warnings.filterwarnings("ignore")
WHISPER_MODEL = whisper.load_model("tiny")
print("WHISPER_MODEL", WHISPER_MODEL)


# UNCOMMENT TO USE WHISPER
def transcribe(aud_inp, whisper_lang):
    if aud_inp is None:
        return ""
    aud = whisper.load_audio(aud_inp)
    aud = whisper.pad_or_trim(aud)
    mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device)
    _, probs = WHISPER_MODEL.detect_language(mel)
    options = whisper.DecodingOptions()
    if whisper_lang != WHISPER_DETECT_LANG:
        whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code(whisper_lang)
        options = whisper.DecodingOptions(language=whisper_lang_code)
    result = whisper.decode(WHISPER_MODEL, mel, options)
    print("result.text", result.text)
    result_text = ""
    if result and result.text:
        result_text = result.text
    return result_text


# Temporarily address Wolfram Alpha SSL certificate issue
ssl._create_default_https_context = ssl._create_unverified_context


# TEMPORARY FOR TESTING
def transcribe_dummy(aud_inp_tb, whisper_lang):
    if aud_inp_tb is None:
        return ""
    # aud = whisper.load_audio(aud_inp)
    # aud = whisper.pad_or_trim(aud)
    # mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device)
    # _, probs = WHISPER_MODEL.detect_language(mel)
    # options = whisper.DecodingOptions()
    # options = whisper.DecodingOptions(language="ja")
    # result = whisper.decode(WHISPER_MODEL, mel, options)
    result_text = "Whisper will detect language"
    if whisper_lang != WHISPER_DETECT_LANG:
        whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code(whisper_lang)
        result_text = f"Whisper will use lang code: {whisper_lang_code}"
    print("result_text", result_text)
    return aud_inp_tb


# Pertains to Express-inator functionality
def transform_text(desc, express_chain, num_words, formality,
                   anticipation_level, joy_level, trust_level,
                   fear_level, surprise_level, sadness_level, disgust_level, anger_level,
                   lang_level, translate_to, literary_style):
    num_words_prompt = ""
    if num_words and int(num_words) != 0:
        num_words_prompt = "using up to " + str(num_words) + " words, "

    # Change some arguments to lower case
    formality = formality.lower()
    anticipation_level = anticipation_level.lower()
    joy_level = joy_level.lower()
    trust_level = trust_level.lower()
    fear_level = fear_level.lower()
    surprise_level = surprise_level.lower()
    sadness_level = sadness_level.lower()
    disgust_level = disgust_level.lower()
    anger_level = anger_level.lower()

    formality_str = ""
    if formality != "n/a":
        formality_str = "in a " + formality + " manner, "

    # put all emotions into a list
    emotions = []
    if anticipation_level != "n/a":
        emotions.append(anticipation_level)
    if joy_level != "n/a":
        emotions.append(joy_level)
    if trust_level != "n/a":
        emotions.append(trust_level)
    if fear_level != "n/a":
        emotions.append(fear_level)
    if surprise_level != "n/a":
        emotions.append(surprise_level)
    if sadness_level != "n/a":
        emotions.append(sadness_level)
    if disgust_level != "n/a":
        emotions.append(disgust_level)
    if anger_level != "n/a":
        emotions.append(anger_level)

    emotions_str = ""
    if len(emotions) > 0:
        if len(emotions) == 1:
            emotions_str = "with emotion of " + emotions[0] + ", "
        else:
            emotions_str = "with emotions of " + ", ".join(emotions[:-1]) + " and " + emotions[-1] + ", "

    lang_level_str = ""
    if lang_level != LANG_LEVEL_DEFAULT:
        lang_level_str = "at a " + lang_level + " level, " if translate_to == TRANSLATE_TO_DEFAULT else ""

    translate_to_str = ""
    if translate_to != TRANSLATE_TO_DEFAULT:
        translate_to_str = "translated to " + (
            "" if lang_level == TRANSLATE_TO_DEFAULT else lang_level + " level ") + translate_to + ", "

    literary_style_str = ""
    if literary_style != LITERARY_STYLE_DEFAULT:
        if literary_style == "Prose":
            literary_style_str = "as prose, "
        if literary_style == "Story":
            literary_style_str = "as a story, "
        elif literary_style == "Summary":
            literary_style_str = "as a summary, "
        elif literary_style == "Outline":
            literary_style_str = "as an outline numbers and lower case letters, "
        elif literary_style == "Bullets":
            literary_style_str = "as bullet points using bullets, "
        elif literary_style == "Poetry":
            literary_style_str = "as a poem, "
        elif literary_style == "Haiku":
            literary_style_str = "as a haiku, "
        elif literary_style == "Limerick":
            literary_style_str = "as a limerick, "
        elif literary_style == "Rap":
            literary_style_str = "as a rap, "
        elif literary_style == "Joke":
            literary_style_str = "as a very funny joke with a setup and punchline, "
        elif literary_style == "Knock-knock":
            literary_style_str = "as a very funny knock-knock joke, "
        elif literary_style == "FAQ":
            literary_style_str = "as a FAQ with several questions and answers, "

    formatted_prompt = PROMPT_TEMPLATE.format(
        original_words=desc,
        num_words=num_words_prompt,
        formality=formality_str,
        emotions=emotions_str,
        lang_level=lang_level_str,
        translate_to=translate_to_str,
        literary_style=literary_style_str
    )

    trans_instr = num_words_prompt + formality_str + emotions_str + lang_level_str + translate_to_str + literary_style_str
    if express_chain and len(trans_instr.strip()) > 0:
        generated_text = express_chain.run(
            {'original_words': desc, 'num_words': num_words_prompt, 'formality': formality_str,
             'emotions': emotions_str, 'lang_level': lang_level_str, 'translate_to': translate_to_str,
             'literary_style': literary_style_str}).strip()
    else:
        print("Not transforming text")
        generated_text = desc

    # replace all newlines with <br> in generated_text
    generated_text = generated_text.replace("\n", "\n\n")

    prompt_plus_generated = "GPT prompt: " + formatted_prompt + "\n\n" + generated_text

    print("\n==== date/time: " + str(datetime.datetime.now() - datetime.timedelta(hours=5)) + " ====")
    print("prompt_plus_generated: " + prompt_plus_generated)

    return generated_text


def load_chain(tools_list, llm):
    chain = None
    express_chain = None
    memory = None
    if llm:
        print("\ntools_list", tools_list)
        tool_names = tools_list
        tools = load_tools(tool_names, llm=llm, news_api_key=news_api_key, tmdb_bearer_token=tmdb_bearer_token)

        memory = ConversationBufferMemory(memory_key="chat_history")

        chain = initialize_agent(tools, llm, agent="conversational-react-description", verbose=True, memory=memory)
        express_chain = LLMChain(llm=llm, prompt=PROMPT_TEMPLATE, verbose=True)
    return chain, express_chain, memory


def set_openai_api_key(api_key):
    """Set the api key and return chain.
    If no api_key, then None is returned.
    """
    if api_key and api_key.startswith("sk-") and len(api_key) > 50:
        os.environ["OPENAI_API_KEY"] = api_key
        print("\n\n ++++++++++++++ Setting OpenAI API key ++++++++++++++ \n\n")
        print(str(datetime.datetime.now()) + ": Before OpenAI, OPENAI_API_KEY length: " + str(
            len(os.environ["OPENAI_API_KEY"])))
        llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS)
        print(str(datetime.datetime.now()) + ": After OpenAI, OPENAI_API_KEY length: " + str(
            len(os.environ["OPENAI_API_KEY"])))
        chain, express_chain, memory = load_chain(TOOLS_DEFAULT_LIST, llm)

        # Pertains to question answering functionality
        embeddings = OpenAIEmbeddings()
        qa_chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")

        print(str(datetime.datetime.now()) + ": After load_chain, OPENAI_API_KEY length: " + str(
            len(os.environ["OPENAI_API_KEY"])))
        os.environ["OPENAI_API_KEY"] = ""
        return chain, express_chain, llm, embeddings, qa_chain, memory
    return None, None, None, None, None, None


def run_chain(chain, inp, capture_hidden_text):
    output = ""
    hidden_text = None
    if capture_hidden_text:
        error_msg = None
        tmp = sys.stdout
        hidden_text_io = StringIO()
        sys.stdout = hidden_text_io

        try:
            output = chain.run(input=inp)
        except AuthenticationError as ae:
            error_msg = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae)
            print("error_msg", error_msg)
        except RateLimitError as rle:
            error_msg = "\n\nRateLimitError: " + str(rle)
        except ValueError as ve:
            error_msg = "\n\nValueError: " + str(ve)
        except InvalidRequestError as ire:
            error_msg = "\n\nInvalidRequestError: " + str(ire)
        except Exception as e:
            error_msg = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e)

        sys.stdout = tmp
        hidden_text = hidden_text_io.getvalue()

        # remove escape characters from hidden_text
        hidden_text = re.sub(r'\x1b[^m]*m', '', hidden_text)

        # remove "Entering new AgentExecutor chain..." from hidden_text
        hidden_text = re.sub(r"Entering new AgentExecutor chain...\n", "", hidden_text)

        # remove "Finished chain." from hidden_text
        hidden_text = re.sub(r"Finished chain.", "", hidden_text)

        # Add newline after "Thought:" "Action:" "Observation:" "Input:" and "AI:"
        hidden_text = re.sub(r"Thought:", "\n\nThought:", hidden_text)
        hidden_text = re.sub(r"Action:", "\n\nAction:", hidden_text)
        hidden_text = re.sub(r"Observation:", "\n\nObservation:", hidden_text)
        hidden_text = re.sub(r"Input:", "\n\nInput:", hidden_text)
        hidden_text = re.sub(r"AI:", "\n\nAI:", hidden_text)

        if error_msg:
            hidden_text += error_msg

        print("hidden_text: ", hidden_text)
    else:
        try:
            output = chain.run(input=inp)
        except AuthenticationError as ae:
            output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae)
            print("output", output)
        except RateLimitError as rle:
            output = "\n\nRateLimitError: " + str(rle)
        except ValueError as ve:
            output = "\n\nValueError: " + str(ve)
        except InvalidRequestError as ire:
            output = "\n\nInvalidRequestError: " + str(ire)
        except Exception as e:
            output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e)

    return output, hidden_text


def reset_memory(history, memory):
    memory.clear()
    history = []
    return history, history, memory


class ChatWrapper:

    def __init__(self):
        self.lock = Lock()

    def __call__(
            self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain],
            trace_chain: bool, speak_text: bool, talking_head: bool, monologue: bool, express_chain: Optional[LLMChain],
            num_words, formality, anticipation_level, joy_level, trust_level,
            fear_level, surprise_level, sadness_level, disgust_level, anger_level,
            lang_level, translate_to, literary_style, qa_chain, docsearch, use_embeddings
    ):
        """Execute the chat functionality."""
        self.lock.acquire()
        try:
            print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
            print("inp: " + inp)
            print("trace_chain: ", trace_chain)
            print("speak_text: ", speak_text)
            print("talking_head: ", talking_head)
            print("monologue: ", monologue)
            history = history or []
            # If chain is None, that is because no API key was provided.
            output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now())
            hidden_text = output

            if chain:
                # Set OpenAI key
                import openai
                openai.api_key = api_key
                if not monologue:
                    if use_embeddings:
                        if inp and inp.strip() != "":
                            if docsearch:
                                docs = docsearch.similarity_search(inp)
                                output = str(qa_chain.run(input_documents=docs, question=inp))
                            else:
                                output, hidden_text = "Please supply some text in the the Embeddings tab.", None
                        else:
                            output, hidden_text = "What's on your mind?", None
                    else:
                        output, hidden_text = run_chain(chain, inp, capture_hidden_text=trace_chain)
                else:
                    output, hidden_text = inp, None

            output = transform_text(output, express_chain, num_words, formality, anticipation_level, joy_level,
                                    trust_level,
                                    fear_level, surprise_level, sadness_level, disgust_level, anger_level,
                                    lang_level, translate_to, literary_style)

            text_to_display = output
            if trace_chain:
                text_to_display = hidden_text + "\n\n" + output
            history.append((inp, text_to_display))

            html_video, temp_file, html_audio, temp_aud_file = None, None, None, None
            if speak_text:
                if talking_head:
                    if len(output) <= MAX_TALKING_HEAD_TEXT_LENGTH:
                        html_video, temp_file = do_html_video_speak(output, translate_to)
                    else:
                        temp_file = LOOPING_TALKING_HEAD
                        html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH)
                        html_audio, temp_aud_file = do_html_audio_speak(output, translate_to)
                else:
                    html_audio, temp_aud_file = do_html_audio_speak(output, translate_to)
            else:
                if talking_head:
                    temp_file = LOOPING_TALKING_HEAD
                    html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH)
                else:
                    # html_audio, temp_aud_file = do_html_audio_speak(output, translate_to)
                    # html_video = create_html_video(temp_file, "128")
                    pass

        except Exception as e:
            raise e
        finally:
            self.lock.release()
        return history, history, html_video, temp_file, html_audio, temp_aud_file, ""
        # return history, history, html_audio, temp_aud_file, ""


chat = ChatWrapper()


def do_html_audio_speak(words_to_speak, polly_language):
    polly_client = boto3.Session(
        aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"],
        aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"],
        region_name=os.environ["AWS_DEFAULT_REGION"]
    ).client('polly')

    # voice_id, language_code, engine = POLLY_VOICE_DATA.get_voice(polly_language, "Female")
    voice_id, language_code, engine = POLLY_VOICE_DATA.get_voice(polly_language, "Male")
    if not voice_id:
        # voice_id = "Joanna"
        voice_id = "Matthew"
        language_code = "en-US"
        engine = NEURAL_ENGINE
    response = polly_client.synthesize_speech(
        Text=words_to_speak,
        OutputFormat='mp3',
        VoiceId=voice_id,
        LanguageCode=language_code,
        Engine=engine
    )

    html_audio = '<pre>no audio</pre>'

    # Save the audio stream returned by Amazon Polly on Lambda's temp directory
    if "AudioStream" in response:
        with closing(response["AudioStream"]) as stream:
            # output = os.path.join("/tmp/", "speech.mp3")

            try:
                with open('audios/tempfile.mp3', 'wb') as f:
                    f.write(stream.read())
                temp_aud_file = gr.File("audios/tempfile.mp3")
                temp_aud_file_url = "/file=" + temp_aud_file.value['name']
                html_audio = f'<audio autoplay><source src={temp_aud_file_url} type="audio/mp3"></audio>'
            except IOError as error:
                # Could not write to file, exit gracefully
                print(error)
                return None, None
    else:
        # The response didn't contain audio data, exit gracefully
        print("Could not stream audio")
        return None, None

    return html_audio, "audios/tempfile.mp3"


def create_html_video(file_name, width):
    temp_file_url = "/file=" + tmp_file.value['name']
    html_video = f'<video width={width} height={width} autoplay muted loop><source src={temp_file_url} type="video/mp4" poster="Masahiro.png"></video>'
    return html_video


def do_html_video_speak(words_to_speak, azure_language):
    azure_voice = AZURE_VOICE_DATA.get_voice(azure_language, "Male")
    if not azure_voice:
        azure_voice = "en-US-ChristopherNeural"

    headers = {"Authorization": f"Bearer {os.environ['EXHUMAN_API_KEY']}"}
    body = {
        'bot_name': 'Masahiro',
        'bot_response': words_to_speak,
        'azure_voice': azure_voice,
        'azure_style': 'friendly',
        'animation_pipeline': 'high_speed',
    }
    api_endpoint = "https://api.exh.ai/animations/v1/generate_lipsync"
    res = requests.post(api_endpoint, json=body, headers=headers)
    print("res.status_code: ", res.status_code)

    html_video = '<pre>no video</pre>'
    if isinstance(res.content, bytes):
        response_stream = io.BytesIO(res.content)
        print("len(res.content)): ", len(res.content))

        with open('videos/tempfile.mp4', 'wb') as f:
            f.write(response_stream.read())
        temp_file = gr.File("videos/tempfile.mp4")
        temp_file_url = "/file=" + temp_file.value['name']
        html_video = f'<video width={TALKING_HEAD_WIDTH} height={TALKING_HEAD_WIDTH} autoplay><source src={temp_file_url} type="video/mp4" poster="Masahiro.png"></video>'
    else:
        print('video url unknown')
    return html_video, "videos/tempfile.mp4"


def update_selected_tools(widget, state, llm):
    if widget:
        state = widget
        chain, express_chain, memory = load_chain(state, llm)
        return state, llm, chain, express_chain


def update_talking_head(widget, state):
    if widget:
        state = widget

        video_html_talking_head = create_html_video(LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH)
        return state, video_html_talking_head
    else:
        # return state, create_html_video(LOOPING_TALKING_HEAD, "32")
        return None, "<pre></pre>"


def update_foo(widget, state):
    if widget:
        state = widget
        return state


# Pertains to question answering functionality
def update_embeddings(embeddings_text, embeddings, qa_chain):
    if embeddings_text:
        text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        texts = text_splitter.split_text(embeddings_text)

        docsearch = FAISS.from_texts(texts, embeddings)
        print("Embeddings updated")
        return docsearch


# Pertains to question answering functionality
def update_use_embeddings(widget, state):
    if widget:
        state = widget
        return state
    



with gr.Blocks(css=".gradio-container {background-color: lightgray}") as block:
    llm_state = gr.State()
    history_state = gr.State()
    chain_state = gr.State()
    express_chain_state = gr.State()
    tools_list_state = gr.State(TOOLS_DEFAULT_LIST)
    trace_chain_state = gr.State(False)
    speak_text_state = gr.State(False)
    talking_head_state = gr.State(True)
    monologue_state = gr.State(False)  # Takes the input and repeats it back to the user, optionally transforming it.
    memory_state = gr.State()

    # Pertains to Express-inator functionality
    num_words_state = gr.State(NUM_WORDS_DEFAULT)
    formality_state = gr.State(FORMALITY_DEFAULT)
    anticipation_level_state = gr.State(EMOTION_DEFAULT)
    joy_level_state = gr.State(EMOTION_DEFAULT)
    trust_level_state = gr.State(EMOTION_DEFAULT)
    fear_level_state = gr.State(EMOTION_DEFAULT)
    surprise_level_state = gr.State(EMOTION_DEFAULT)
    sadness_level_state = gr.State(EMOTION_DEFAULT)
    disgust_level_state = gr.State(EMOTION_DEFAULT)
    anger_level_state = gr.State(EMOTION_DEFAULT)
    lang_level_state = gr.State(LANG_LEVEL_DEFAULT)
    translate_to_state = gr.State(TRANSLATE_TO_DEFAULT)
    literary_style_state = gr.State(LITERARY_STYLE_DEFAULT)

    # Pertains to WHISPER functionality
    whisper_lang_state = gr.State(WHISPER_DETECT_LANG)

    # Pertains to question answering functionality
    embeddings_state = gr.State()
    qa_chain_state = gr.State()
    docsearch_state = gr.State()
    use_embeddings_state = gr.State(False)

    with gr.Tab("Chat"):
        with gr.Row():
            with gr.Column():
                gr.HTML(
                    """<b><center>GPT + WolframAlpha + Whisper</center></b>
                    <p><center>New features: <b>API key save. 2048 Input Tokens. News-api enabled
            </b></center></p>""")

            openai_api_key_textbox = gr.Textbox(placeholder="Paste your OpenAI API key (sk-...)",
                                                show_label=False, lines=1, type='password', elem_id="openai_api_key_textbox")

        with gr.Row():
            with gr.Column(scale=1, min_width=TALKING_HEAD_WIDTH, visible=True):
                speak_text_cb = gr.Checkbox(label="Enable speech", value=False)
                speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state],
                                     outputs=[speak_text_state])

                my_file = gr.File(label="Upload a file", type="file", visible=False)
                tmp_file = gr.File(LOOPING_TALKING_HEAD, visible=False)
                # tmp_file_url = "/file=" + tmp_file.value['name']
                htm_video = create_html_video(LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH)
                video_html = gr.HTML(htm_video)

                # my_aud_file = gr.File(label="Audio file", type="file", visible=True)
                tmp_aud_file = gr.File("audios/tempfile.mp3", visible=False)
                tmp_aud_file_url = "/file=" + tmp_aud_file.value['name']
                htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>'
                audio_html = gr.HTML(htm_audio)

            with gr.Column(scale=7):
                chatbot = gr.Chatbot()

        with gr.Row():
            message = gr.Textbox(label="What's on your mind??",
                                 placeholder="What's the answer to life, the universe, and everything?",
                                 lines=1)
            submit = gr.Button(value="Send", variant="secondary").style(full_width=False)

        # UNCOMMENT TO USE WHISPER
        with gr.Row():
            audio_comp = gr.Microphone(source="microphone", type="filepath", label="Just say it!",
                                       interactive=True, streaming=False)
            audio_comp.change(transcribe, inputs=[audio_comp, whisper_lang_state], outputs=[message])

        # TEMPORARY FOR TESTING
        # with gr.Row():
        #     audio_comp_tb = gr.Textbox(label="Just say it!", lines=1)
        #     audio_comp_tb.submit(transcribe_dummy, inputs=[audio_comp_tb, whisper_lang_state], outputs=[message])

        gr.Examples(
            examples=["How many people live in Canada?",
                      "What is 2 to the 30th power?",
                      "If x+y=10 and x-y=4, what are x and y?",
                      "How much did it rain in SF today?",
                      "Get me information about the movie 'Avatar'",
                      "What are the top tech headlines in the US?",
                      "On the desk, you see two blue booklets, two purple booklets, and two yellow pairs of sunglasses - "
                      "if I remove all the pairs of sunglasses from the desk, how many purple items remain on it?"],
            inputs=message
        )

    with gr.Tab("Settings"):
        tools_cb_group = gr.CheckboxGroup(label="Tools:", choices=TOOLS_LIST,
                                          value=TOOLS_DEFAULT_LIST)
        tools_cb_group.change(update_selected_tools,
                              inputs=[tools_cb_group, tools_list_state, llm_state],
                              outputs=[tools_list_state, llm_state, chain_state, express_chain_state])

        trace_chain_cb = gr.Checkbox(label="Show reasoning chain in chat bubble", value=False)
        trace_chain_cb.change(update_foo, inputs=[trace_chain_cb, trace_chain_state],
                              outputs=[trace_chain_state])

        # speak_text_cb = gr.Checkbox(label="Speak text from agent", value=False)
        # speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state],
        #                      outputs=[speak_text_state])

        talking_head_cb = gr.Checkbox(label="Show talking head", value=True)
        talking_head_cb.change(update_talking_head, inputs=[talking_head_cb, talking_head_state],
                               outputs=[talking_head_state, video_html])

        monologue_cb = gr.Checkbox(label="Babel fish mode (translate/restate what you enter, no conversational agent)",
                                   value=False)
        monologue_cb.change(update_foo, inputs=[monologue_cb, monologue_state],
                            outputs=[monologue_state])

        reset_btn = gr.Button(value="Reset chat", variant="secondary").style(full_width=False)
        reset_btn.click(reset_memory, inputs=[history_state, memory_state], outputs=[chatbot, history_state, memory_state])

    with gr.Tab("Whisper STT"):
        whisper_lang_radio = gr.Radio(label="Whisper speech-to-text language:", choices=[
            WHISPER_DETECT_LANG, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)",
            "Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)",
            "English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)",
            "German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese",
            "Korean", "Norwegian", "Polish",
            "Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)",
            "Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Vietnamese", "Welsh"],
                                      value=WHISPER_DETECT_LANG)

        whisper_lang_radio.change(update_foo,
                                  inputs=[whisper_lang_radio, whisper_lang_state],
                                  outputs=[whisper_lang_state])

    with gr.Tab("Translate to"):
        lang_level_radio = gr.Radio(label="Language level:", choices=[
            LANG_LEVEL_DEFAULT, "1st grade", "2nd grade", "3rd grade", "4th grade", "5th grade", "6th grade",
            "7th grade", "8th grade", "9th grade", "10th grade", "11th grade", "12th grade", "University"],
                                    value=LANG_LEVEL_DEFAULT)
        lang_level_radio.change(update_foo, inputs=[lang_level_radio, lang_level_state],
                                outputs=[lang_level_state])

        translate_to_radio = gr.Radio(label="Language:", choices=[
            TRANSLATE_TO_DEFAULT, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)",
            "Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)",
            "English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)",
            "German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese",
            "Korean", "Norwegian", "Polish",
            "Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)",
            "Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Vietnamese", "Welsh",
            "emojis", "Gen Z slang", "how the stereotypical Karen would say it", "Klingon", "Neanderthal",
            "Pirate", "Strange Planet expospeak technical talk", "Yoda"],
                                      value=TRANSLATE_TO_DEFAULT)

        translate_to_radio.change(update_foo,
                                  inputs=[translate_to_radio, translate_to_state],
                                  outputs=[translate_to_state])

    with gr.Tab("Formality"):
        formality_radio = gr.Radio(label="Formality:",
                                   choices=[FORMALITY_DEFAULT, "Casual", "Polite", "Honorific"],
                                   value=FORMALITY_DEFAULT)
        formality_radio.change(update_foo,
                               inputs=[formality_radio, formality_state],
                               outputs=[formality_state])

    with gr.Tab("Lit style"):
        literary_style_radio = gr.Radio(label="Literary style:", choices=[
            LITERARY_STYLE_DEFAULT, "Prose", "Story", "Summary", "Outline", "Bullets", "Poetry", "Haiku", "Limerick", "Rap",
            "Joke", "Knock-knock", "FAQ"],
                                        value=LITERARY_STYLE_DEFAULT)

        literary_style_radio.change(update_foo,
                                    inputs=[literary_style_radio, literary_style_state],
                                    outputs=[literary_style_state])

    with gr.Tab("Emotions"):
        anticipation_level_radio = gr.Radio(label="Anticipation level:",
                                            choices=[EMOTION_DEFAULT, "Interest", "Anticipation", "Vigilance"],
                                            value=EMOTION_DEFAULT)
        anticipation_level_radio.change(update_foo,
                                        inputs=[anticipation_level_radio, anticipation_level_state],
                                        outputs=[anticipation_level_state])

        joy_level_radio = gr.Radio(label="Joy level:",
                                   choices=[EMOTION_DEFAULT, "Serenity", "Joy", "Ecstasy"],
                                   value=EMOTION_DEFAULT)
        joy_level_radio.change(update_foo,
                               inputs=[joy_level_radio, joy_level_state],
                               outputs=[joy_level_state])

        trust_level_radio = gr.Radio(label="Trust level:",
                                     choices=[EMOTION_DEFAULT, "Acceptance", "Trust", "Admiration"],
                                     value=EMOTION_DEFAULT)
        trust_level_radio.change(update_foo,
                                 inputs=[trust_level_radio, trust_level_state],
                                 outputs=[trust_level_state])

        fear_level_radio = gr.Radio(label="Fear level:",
                                    choices=[EMOTION_DEFAULT, "Apprehension", "Fear", "Terror"],
                                    value=EMOTION_DEFAULT)
        fear_level_radio.change(update_foo,
                                inputs=[fear_level_radio, fear_level_state],
                                outputs=[fear_level_state])

        surprise_level_radio = gr.Radio(label="Surprise level:",
                                        choices=[EMOTION_DEFAULT, "Distraction", "Surprise", "Amazement"],
                                        value=EMOTION_DEFAULT)
        surprise_level_radio.change(update_foo,
                                    inputs=[surprise_level_radio, surprise_level_state],
                                    outputs=[surprise_level_state])

        sadness_level_radio = gr.Radio(label="Sadness level:",
                                       choices=[EMOTION_DEFAULT, "Pensiveness", "Sadness", "Grief"],
                                       value=EMOTION_DEFAULT)
        sadness_level_radio.change(update_foo,
                                   inputs=[sadness_level_radio, sadness_level_state],
                                   outputs=[sadness_level_state])

        disgust_level_radio = gr.Radio(label="Disgust level:",
                                       choices=[EMOTION_DEFAULT, "Boredom", "Disgust", "Loathing"],
                                       value=EMOTION_DEFAULT)
        disgust_level_radio.change(update_foo,
                                   inputs=[disgust_level_radio, disgust_level_state],
                                   outputs=[disgust_level_state])

        anger_level_radio = gr.Radio(label="Anger level:",
                                     choices=[EMOTION_DEFAULT, "Annoyance", "Anger", "Rage"],
                                     value=EMOTION_DEFAULT)
        anger_level_radio.change(update_foo,
                                 inputs=[anger_level_radio, anger_level_state],
                                 outputs=[anger_level_state])

    with gr.Tab("Max words"):
        num_words_slider = gr.Slider(label="Max number of words to generate (0 for don't care)",
                                     value=NUM_WORDS_DEFAULT, minimum=0, maximum=MAX_WORDS, step=10)
        num_words_slider.change(update_foo,
                                inputs=[num_words_slider, num_words_state],
                                outputs=[num_words_state])

    with gr.Tab("Embeddings"):
        embeddings_text_box = gr.Textbox(label="Enter text for embeddings and hit Create:",
                                         lines=20)

        with gr.Row():
            use_embeddings_cb = gr.Checkbox(label="Use embeddings", value=False)
            use_embeddings_cb.change(update_use_embeddings, inputs=[use_embeddings_cb, use_embeddings_state],
                                     outputs=[use_embeddings_state])

            embeddings_text_submit = gr.Button(value="Create", variant="secondary").style(full_width=False)
            embeddings_text_submit.click(update_embeddings,
                                         inputs=[embeddings_text_box, embeddings_state, qa_chain_state],
                                         outputs=[docsearch_state])

    gr.HTML("""
        <p>This application, developed by <a href='https://www.linkedin.com/in/javafxpert/'>James L. Weaver</a>, 
        demonstrates a conversational agent implemented with OpenAI GPT-3.5 and LangChain. 
        When necessary, it leverages tools for complex math, searching the internet, and accessing news and weather.
        Uses talking heads from <a href='https://exh.ai/'>Ex-Human</a>.
        For faster inference without waiting in queue, you may duplicate the space.
        </p>""")

    gr.HTML("""
<form action="https://www.paypal.com/donate" method="post" target="_blank">
<input type="hidden" name="business" value="AK8BVNALBXSPQ" />
<input type="hidden" name="no_recurring" value="0" />
<input type="hidden" name="item_name" value="Please consider helping to defray the cost of APIs such as SerpAPI and WolframAlpha that this app uses." />
<input type="hidden" name="currency_code" value="USD" />
<input type="image" src="https://www.paypalobjects.com/en_US/i/btn/btn_donate_LG.gif" border="0" name="submit" title="PayPal - The safer, easier way to pay online!" alt="Donate with PayPal button" />
<img alt="" border="0" src="https://www.paypal.com/en_US/i/scr/pixel.gif" width="1" height="1" />
</form>
    """)

    gr.HTML("""<center>
        <a href="https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain?duplicate=true">
        <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
        Powered by <a href='https://github.com/hwchase17/langchain'>LangChain πŸ¦œοΈπŸ”—</a>
        </center>""")

    message.submit(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state,
                                 speak_text_state, talking_head_state, monologue_state,
                                 express_chain_state, num_words_state, formality_state,
                                 anticipation_level_state, joy_level_state, trust_level_state, fear_level_state,
                                 surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state,
                                 lang_level_state, translate_to_state, literary_style_state,
                                 qa_chain_state, docsearch_state, use_embeddings_state],
                   outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message])
    # outputs=[chatbot, history_state, audio_html, tmp_aud_file, message])

    submit.click(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state,
                               speak_text_state, talking_head_state, monologue_state,
                               express_chain_state, num_words_state, formality_state,
                               anticipation_level_state, joy_level_state, trust_level_state, fear_level_state,
                               surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state,
                               lang_level_state, translate_to_state, literary_style_state,
                               qa_chain_state, docsearch_state, use_embeddings_state],
                 outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message])
    # outputs=[chatbot, history_state, audio_html, tmp_aud_file, message])

    openai_api_key_textbox.change(None,
                                  inputs=[openai_api_key_textbox],
                                  outputs=None, _js="(api_key) => localStorage.setItem('open_api_key', api_key)")

    openai_api_key_textbox.change(set_openai_api_key,
                                  inputs=[openai_api_key_textbox],
                                  outputs=[chain_state, express_chain_state, llm_state, embeddings_state,
                                           qa_chain_state, memory_state])
    
    block.load(None, inputs=None, outputs=openai_api_key_textbox, _js="()=> localStorage.getItem('open_api_key')")
   

block.launch(debug=True)