File size: 14,969 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
"""Overview:
This code implements the evaluation of agents on the GPQA Benchmark with Open Book setting.
- The benchmark consists of 448 high-quality and extremely difficult multiple-choice questions in the domains of biology, physics, and chemistry. The questions are intentionally designed to be "Google-proof," meaning that even highly skilled non-expert validators achieve only 34% accuracy despite unrestricted access to the web.
- Even experts in the corresponding domains achieve only 65% accuracy.
- State-of-the-art AI systems achieve only 39% accuracy on this challenging dataset.
Accurate solving of above graduate level questions would require both tool use (e.g., python for calculations) and web-search for finding related facts as information required for the questions might not be part of the LLM knowledge / training data.
Further references:
- https://arxiv.org/pdf/2311.12022
- https://paperswithcode.com/dataset/gpqa
- https://github.com/idavidrein/gpqa
TODOs:
- Add evaluation on other Agent classes
- Batch inference and evaluation of agents on the GPQA Benchmark.
"""
import asyncio
import os
import random
import re
from typing import Callable
import pandas as pd
from datasets import load_dataset
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
Action,
AgentFinishAction,
MessageAction,
)
from openhands.events.observation import Observation
from openhands.utils.async_utils import call_async_from_sync
ACTION_FORMAT = """
<<FINAL_ANSWER||
<insert correct answer here, must be one of A, B, C, D> (Please dont use any additional characters. Just the letter of the correct answer (A/B/C/D).)
||FINAL_ANSWER>>
""".strip()
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def gpqa_codeact_user_response(
state: State,
encapsulate_solution: bool = False,
try_parse: Callable[[Action], str] | None = None,
) -> str:
msg = (
'Please continue working on the task on whatever approach you think is suitable.\n'
'Feel free to use all tools for calculations and solving the problem, and web-search for finding relevant facts during the process if needed\n'
'If you have finished reporting the answer in the expected format, (and only once that is done), please use the "finish" tool to finish the interaction.\n'
'Again you are being told a million times to first report the answer in the requested format (see again below for reference) before exiting. DO NOT EXIT WITHOUT REPORTING THE ANSWER FIRST.\n'
'That is, when you have decided on the answer report in the following format:\n'
f'{ACTION_FORMAT}\n'
'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP TO SOLVE THIS TASK.\n'
)
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {'CodeActAgent': gpqa_codeact_user_response}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': '\n\n SUPER IMPORTANT: When you think you have solved the question, first report it back to the user in the requested format. Only once that is done, in the next turn, please finish the interaction using the "finish" tool.\n'
}
def parse_final_answer(final_answer: str | None) -> str | None:
"""Parse the final answer from the final message generated by the agent
to extract the final answer. The final answer is usually enclosed in the format:
<<FINAL_ANSWER||
<insert correct answer here>
||FINAL_ANSWER>>
"""
# to do this first extract the part enclosed in the format <<FINAL_ANSWER|| ... ||FINAL_ANSWER>>
pattern = re.compile(r'<<FINAL_ANSWER\|\|(.*?)\|\|FINAL_ANSWER>>', re.DOTALL)
match = pattern.search(final_answer)
# and then strip it, remove any leading/trailing spaces line breaks etc.
answer = match.group(1).strip()
# finally capitalize it
answer = answer.upper()
# and then return A, B, C, D depending on whether the answer A, B, C, D is found in the final answer
for letter in ['A', 'B', 'C', 'D']:
if letter in answer:
return letter
def compare_answers(model_output: str | None, ground_truth: str):
"""Compare the predicted answer with the ground truth answer"""
try:
# parse the final answer from model output
predicted_answer = parse_final_answer(model_output)
except Exception as e:
# Log the exception
logger.error(f'An error occurred: {e}\n defaulting to random guess ...')
# choose a random answer if the model output is not in the correct format
predicted_answer = random.choice(['A', 'B', 'C', 'D'])
logger.info('#############################################')
logger.info(f'Predicted answer: {predicted_answer}')
logger.info(f'Ground truth answer: {ground_truth}')
logger.info('#############################################')
return predicted_answer == ground_truth
def convert_instance_dict(instance):
"""Used for preprocessing the hf dataset into a format that can be used by the agent.
Reads and extracts relevant information from the dataset instance.
"""
out_instance_dict = {}
out_instance_dict['question'] = instance['Question']
correct_answer = instance['Correct Answer']
out_instance_dict['choices'] = [
correct_answer,
instance['Incorrect Answer 1'],
instance['Incorrect Answer 2'],
instance['Incorrect Answer 3'],
]
# Randomize the order of choices
random.shuffle(out_instance_dict['choices'])
# Find the index of the correct answer after shuffling and store it as a letter (A/B/C/D)
correct_index = out_instance_dict['choices'].index(correct_answer)
correct_letter = chr(
65 + correct_index
) # Convert index (0-3) to corresponding letter (A-D)
out_instance_dict['correct_solution'] = correct_letter
return out_instance_dict
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
else:
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
# ======= Run the agent on the instance =======
# Prepare instruction for the agent using suggested format in gpqa codebase
instruction = f"""
What is the correct answer to this question:\n
{instance['question']}\n
Choices:\n
(A) {instance['choices'][0]}\n
(B) {instance['choices'][1]}\n
(C) {instance['choices'][2]}\n
(D) {instance['choices'][3]}\n
\n\n
MOST IMPORTANT: Format your response as follows:
{ACTION_FORMAT}
Additional Instructions:
- Do not try to solve the question in a single step. Break it down into smaller steps.
- You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.
- SUPER IMPORTANT: When you have reported the answer to the user in the requested format, (and only once that is done) in the next turn, please finish the interaction using the "finish" tool.
- Again you are being told a million times to first report the answer in the requested format (see again below for reference) before exiting. DO NOT EXIT WITHOUT REPORTING THE ANSWER FIRST.
That is, when you have decided on the answer report in the following format:
{ACTION_FORMAT}
Again do not quit without reporting the answer first.
Ok now its time to start solving the question. Good luck!
"""
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
assert state is not None, 'State should not be None.'
# ======= Attempt to evaluate the agent's edits =======
question_choices = {
'A': instance['choices'][0],
'B': instance['choices'][1],
'C': instance['choices'][2],
'D': instance['choices'][3],
}
# get the final message from the state history (default to empty if not found)
found_answers = {
'A': False,
'B': False,
'C': False,
'D': False,
}
for event in reversed(state.history):
if (
isinstance(event, AgentFinishAction)
and event.source != 'user'
and '<<FINAL_ANSWER||' in event.thought
):
final_message = event.thought
break
elif (
isinstance(event, MessageAction)
and event.source != 'user'
and '<<FINAL_ANSWER||' in event.content
):
final_message = event.content
break
elif isinstance(event, Observation):
for option, option_text in question_choices.items():
if option_text in event.content:
found_answers[option] = True
else:
final_message = None
found_options = [option for option, found in found_answers.items() if found]
logger.info('#############################################')
logger.info(f'Final message generated by the agent: {final_message}')
logger.info('#############################################')
# check if the model output matches the ground truth
test_result = compare_answers(final_message, instance.correct_solution)
if final_message is None and len(found_options) > 0:
_selected = random.choice(found_options)
# if the final message is None, then the agent did not report the answer in the correct format
# so we randomly select one of the found options and compare it with the correct solution
test_result = _selected == instance.correct_solution
logger.info('#############################################')
logger.info('Agent did not report the answer in the correct format.')
logger.info(f'Found options: {found_options}')
logger.info(f'Selected option: {_selected}')
logger.info('#############################################')
logger.info('#############################################')
logger.info(f'Test result: {test_result}')
logger.info('#############################################')
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# Save the output
output = EvalOutput(
instance_id=str(instance.instance_id),
instruction=instruction,
metadata=metadata,
history=compatibility_for_eval_history_pairs(state.history),
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'result': test_result,
'found_answers': found_answers,
'last_message': final_message,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
# data split must be one of 'gpqa_main', 'gqpa_diamond', 'gpqa_experts', 'gpqa_extended'
parser.add_argument(
'--data-split',
type=str,
choices=['gpqa_main', 'gpqa_diamond', 'gpqa_experts', 'gpqa_extended'],
default='gpqa_diamond',
help='data split to evaluate, eg. gpqa_diamond',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset('Idavidrein/gpqa', args.data_split)
gpqa_dataset = dataset['train']
# preprocess the dataset
gpqa_dataset = gpqa_dataset.map(convert_instance_dict)
gpqa_dataset = gpqa_dataset.to_pandas()
# Add a new column 'instance_id' with the index
gpqa_dataset['instance_id'] = gpqa_dataset.index
if args.agent_cls != 'CodeActAgent':
raise ValueError(
f'Agent class {args.agent_cls} not supported for GPQA evaluation.'
)
metadata = make_metadata(
llm_config=llm_config,
dataset_name=args.data_split,
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
prepared_dataset = prepare_dataset(gpqa_dataset, output_file, args.eval_n_limit)
run_evaluation(
dataset=prepared_dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)
|