File size: 22,943 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import asyncio
import json
import os
import tempfile
from typing import Any

import pandas as pd
import toml
from datasets import load_dataset

import openhands.agenthub
from evaluation.benchmarks.swe_bench.resource.mapping import (
    get_instance_resource_factor,
)
from evaluation.utils.shared import (
    EvalException,
    EvalMetadata,
    EvalOutput,
    assert_and_raise,
    codeact_user_response,
    get_metrics,
    is_fatal_evaluation_error,
    make_metadata,
    prepare_dataset,
    reset_logger_for_multiprocessing,
    run_evaluation,
    update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
    AgentConfig,
    AppConfig,
    SandboxConfig,
    get_llm_config_arg,
    get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation, ErrorObservation
from openhands.events.serialization.event import event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
from openhands.utils.shutdown_listener import sleep_if_should_continue

USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'true').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'


AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
    'CodeActAgent': codeact_user_response,
}


def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
    return f'{instance.repo}__{instance.version}'.replace('/', '__')


def get_instruction(instance: pd.Series, metadata: EvalMetadata):
    workspace_dir_name = _get_swebench_workspace_dir_name(instance)
    # Prepare instruction

    # Instruction based on Anthropic's official trajectory
    # https://github.com/eschluntz/swe-bench-experiments/tree/main/evaluation/verified/20241022_tools_claude-3-5-sonnet-updated/trajs
    instruction = (
        '<uploaded_files>\n'
        f'/workspace/{workspace_dir_name}\n'
        '</uploaded_files>\n'
        f"I've uploaded a python code repository in the directory {workspace_dir_name}. Consider the following PR description:\n\n"
        f'<pr_description>\n'
        f'{instance.problem_statement}\n'
        '</pr_description>\n\n'
        'Can you help me implement the necessary changes to the repository so that the requirements specified in the <pr_description> are met?\n'
        "I've already taken care of all changes to any of the test files described in the <pr_description>. This means you DON'T have to modify the testing logic or any of the tests in any way!\n"
        'Your task is to make the minimal changes to non-tests files in the /workspace directory to ensure the <pr_description> is satisfied.\n'
        'Follow these steps to resolve the issue:\n'
        '1. As a first step, it might be a good idea to explore the repo to familiarize yourself with its structure.\n'
        '2. Create a script to reproduce the error and execute it with `python <filename.py>` using the BashTool, to confirm the error\n'
        '3. Edit the sourcecode of the repo to resolve the issue\n'
        '4. Rerun your reproduce script and confirm that the error is fixed!\n'
        '5. Think about edgecases and make sure your fix handles them as well\n'
        "Your thinking should be thorough and so it's fine if it's very long.\n"
    )

    if RUN_WITH_BROWSING:
        instruction += (
            '<IMPORTANT!>\n'
            'You SHOULD NEVER attempt to browse the web. '
            '</IMPORTANT!>\n'
        )
    return instruction


# TODO: migrate all swe-bench docker to ghcr.io/openhands
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')


def get_instance_docker_image(instance_id: str) -> str:
    image_name = 'sweb.eval.x86_64.' + instance_id
    image_name = image_name.replace(
        '__', '_s_'
    )  # to comply with docker image naming convention
    return (DOCKER_IMAGE_PREFIX.rstrip('/') + '/' + image_name).lower()


def get_config(

    instance: pd.Series,

    metadata: EvalMetadata,

) -> AppConfig:
    SWE_BENCH_CONTAINER_IMAGE = 'ghcr.io/opendevin/eval-swe-bench:full-v1.2.1'
    if USE_INSTANCE_IMAGE:
        # We use a different instance image for the each instance of swe-bench eval
        base_container_image = get_instance_docker_image(instance['instance_id'])
        logger.info(
            f'Using instance container image: {base_container_image}. '
            f'Please make sure this image exists. '
            f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
        )
    else:
        base_container_image = SWE_BENCH_CONTAINER_IMAGE
        logger.info(f'Using swe-bench container image: {base_container_image}')

    config = AppConfig(
        default_agent=metadata.agent_class,
        run_as_openhands=False,
        max_iterations=metadata.max_iterations,
        runtime=os.environ.get('RUNTIME', 'docker'),
        sandbox=SandboxConfig(
            base_container_image=base_container_image,
            enable_auto_lint=True,
            use_host_network=False,
            # large enough timeout, since some testcases take very long to run
            timeout=300,
            # Add platform to the sandbox config to solve issue 4401
            platform='linux/amd64',
            api_key=os.environ.get('ALLHANDS_API_KEY', None),
            remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
            keep_runtime_alive=False,
            remote_runtime_init_timeout=3600,
            remote_runtime_resource_factor=get_instance_resource_factor(
                dataset_name=metadata.dataset,
                instance_id=instance['instance_id'],
            ),
        ),
        # do not mount workspace
        workspace_base=None,
        workspace_mount_path=None,
    )
    config.set_llm_config(
        update_llm_config_for_completions_logging(
            metadata.llm_config, metadata.eval_output_dir, instance['instance_id']
        )
    )
    agent_config = AgentConfig(
        codeact_enable_jupyter=False,
        codeact_enable_browsing=RUN_WITH_BROWSING,
        codeact_enable_llm_editor=False,
        condenser=metadata.condenser_config,
    )
    config.set_agent_config(agent_config)
    return config


def initialize_runtime(

    runtime: Runtime,

    instance: pd.Series,  # this argument is not required

):
    """Initialize the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    """
    logger.info('-' * 30)
    logger.info('BEGIN Runtime Initialization Fn')
    logger.info('-' * 30)
    workspace_dir_name = _get_swebench_workspace_dir_name(instance)
    obs: CmdOutputObservation

    # Set instance id
    action = CmdRunAction(
        command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
    )
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        obs.exit_code == 0, f'Failed to export SWE_INSTANCE_ID: {str(obs)}'
    )

    action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')

    if USE_INSTANCE_IMAGE:
        # inject the init script
        script_dir = os.path.dirname(__file__)

        # inject the instance info
        action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
        action.set_hard_timeout(600)
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        assert_and_raise(
            obs.exit_code == 0,
            f'Failed to create /swe_util/eval_data/instances: {str(obs)}',
        )

        swe_instance_json_name = 'swe-bench-instance.json'
        with tempfile.TemporaryDirectory() as temp_dir:
            # Construct the full path for the desired file name within the temporary directory
            temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
            # Write to the file with the desired name within the temporary directory
            with open(temp_file_path, 'w') as f:
                if not isinstance(instance, dict):
                    json.dump([instance.to_dict()], f)
                else:
                    json.dump([instance], f)

            # Copy the file to the desired location
            runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')

        # inject the instance swe entry
        runtime.copy_to(
            str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
            '/swe_util/',
        )
        action = CmdRunAction(command='cat ~/.bashrc')
        action.set_hard_timeout(600)
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')

        action = CmdRunAction(command='source ~/.bashrc')
        action.set_hard_timeout(600)
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        if isinstance(obs, ErrorObservation):
            logger.error(f'Failed to source ~/.bashrc: {str(obs)}')
        assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}')

        action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
        action.set_hard_timeout(600)
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        assert_and_raise(
            obs.exit_code == 0,
            f'Failed to source /swe_util/instance_swe_entry.sh: {str(obs)}',
        )
    else:
        action = CmdRunAction(command='source /swe_util/swe_entry.sh')
        action.set_hard_timeout(1800)
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        assert_and_raise(
            obs.exit_code == 0,
            f'Failed to source /swe_util/swe_entry.sh: {str(obs)}',
        )

    action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        obs.exit_code == 0,
        f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
    )

    action = CmdRunAction(command='git reset --hard')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}')

    action = CmdRunAction(
        command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
    )
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}')

    action = CmdRunAction(command='which python')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        obs.exit_code == 0 and 'testbed' in obs.content,
        f'Expected to find python interpreter from testbed, but got: {str(obs)}',
    )

    logger.info('-' * 30)
    logger.info('END Runtime Initialization Fn')
    logger.info('-' * 30)


def complete_runtime(

    runtime: Runtime,

    instance: pd.Series,  # this argument is not required, but it is used to get the workspace_dir_name

) -> dict[str, Any]:
    """Complete the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    If you need to do something in the sandbox to get the correctness metric after

    the agent has run, modify this function.

    """
    logger.info('-' * 30)
    logger.info('BEGIN Runtime Completion Fn')
    logger.info('-' * 30)
    obs: CmdOutputObservation
    workspace_dir_name = _get_swebench_workspace_dir_name(instance)

    action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
        f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
    )

    action = CmdRunAction(command='git config --global core.pager ""')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
        f'Failed to git config --global core.pager "": {str(obs)}',
    )

    action = CmdRunAction(command='git add -A')
    action.set_hard_timeout(600)
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert_and_raise(
        isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
        f'Failed to git add -A: {str(obs)}',
    )

    n_retries = 0
    git_patch = None
    while n_retries < 5:
        action = CmdRunAction(
            command=f'git diff --no-color --cached {instance["base_commit"]}'
        )
        action.set_hard_timeout(max(300 + 100 * n_retries, 600))
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
        n_retries += 1
        if isinstance(obs, CmdOutputObservation):
            if obs.exit_code == 0:
                git_patch = obs.content.strip()
                break
            else:
                logger.info('Failed to get git diff, retrying...')
                sleep_if_should_continue(10)
        elif isinstance(obs, ErrorObservation):
            logger.error(f'Error occurred: {obs.content}. Retrying...')
            sleep_if_should_continue(10)
        else:
            assert_and_raise(False, f'Unexpected observation type: {str(obs)}')

    assert_and_raise(git_patch is not None, 'Failed to get git diff (None)')

    logger.info('-' * 30)
    logger.info('END Runtime Completion Fn')
    logger.info('-' * 30)
    return {'git_patch': git_patch}


def process_instance(

    instance: pd.Series,

    metadata: EvalMetadata,

    reset_logger: bool = True,

    runtime_failure_count: int = 0,

) -> EvalOutput:
    config = get_config(instance, metadata)

    # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
    if reset_logger:
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
        reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
    else:
        logger.info(f'Starting evaluation for instance {instance.instance_id}.')

    # Increase resource_factor with increasing attempt_id
    if runtime_failure_count > 0:
        config.sandbox.remote_runtime_resource_factor = min(
            config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count),
            8,
        )
        logger.warning(
            f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}'
        )
    runtime = create_runtime(config)
    call_async_from_sync(runtime.connect)

    try:
        initialize_runtime(runtime, instance)

        instruction = get_instruction(instance, metadata)

        # Here's how you can run the agent (similar to the `main` function) and get the final task state
        state: State | None = asyncio.run(
            run_controller(
                config=config,
                initial_user_action=MessageAction(content=instruction),
                runtime=runtime,
                fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
                    metadata.agent_class
                ],
            )
        )

        # if fatal error, throw EvalError to trigger re-run
        if is_fatal_evaluation_error(state.last_error):
            raise EvalException('Fatal error detected: ' + state.last_error)

        # ======= THIS IS SWE-Bench specific =======
        # Get git patch
        return_val = complete_runtime(runtime, instance)
        git_patch = return_val['git_patch']
        logger.info(
            f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
        )
    finally:
        runtime.close()
    # ==========================================

    # ======= Attempt to evaluate the agent's edits =======
    # we use eval_infer.sh to evaluate the agent's edits, not here
    # because the agent may alter the environment / testcases
    test_result = {
        'git_patch': git_patch,
    }

    # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
    # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
    if state is None:
        raise ValueError('State should not be None.')

    # NOTE: this is NO LONGER the event stream, but an agent history that includes delegate agent's events
    histories = [event_to_dict(event) for event in state.history]
    metrics = get_metrics(state)

    # Save the output
    output = EvalOutput(
        instance_id=instance.instance_id,
        instruction=instruction,
        instance=instance.to_dict(),  # SWE Bench specific
        test_result=test_result,
        metadata=metadata,
        history=histories,
        metrics=metrics,
        error=state.last_error if state and state.last_error else None,
    )
    return output


def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
    file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            data = toml.load(file)
            if 'selected_ids' in data:
                selected_ids = data['selected_ids']
                logger.info(
                    f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
                )
                subset = dataset[dataset[filter_column].isin(selected_ids)]
                logger.info(f'Retained {subset.shape[0]} tasks after filtering')
                return subset
    skip_ids = os.environ.get('SKIP_IDS', '').split(',')
    if len(skip_ids) > 0:
        logger.info(f'Filtering {len(skip_ids)} tasks from "SKIP_IDS"...')
        return dataset[~dataset[filter_column].isin(skip_ids)]
    return dataset


if __name__ == '__main__':
    parser = get_parser()
    parser.add_argument(
        '--dataset',
        type=str,
        default='princeton-nlp/SWE-bench',
        help='data set to evaluate on, either full-test or lite-test',
    )
    parser.add_argument(
        '--split',
        type=str,
        default='test',
        help='split to evaluate on',
    )
    args, _ = parser.parse_known_args()

    # NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
    # so we don't need to manage file uploading to OpenHands's repo
    dataset = load_dataset(args.dataset, split=args.split)
    swe_bench_tests = filter_dataset(dataset.to_pandas(), 'instance_id')
    logger.info(
        f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_bench_tests)} tasks'
    )

    llm_config = None
    if args.llm_config:
        llm_config = get_llm_config_arg(args.llm_config)
        llm_config.log_completions = True
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        llm_config.modify_params = False

    if llm_config is None:
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')

    details = {}
    _agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)

    dataset_descrption = (
        args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
    )
    metadata = make_metadata(
        llm_config,
        dataset_descrption,
        args.agent_cls,
        args.max_iterations,
        args.eval_note,
        args.eval_output_dir,
        details=details,
    )

    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
    print(f'### OUTPUT FILE: {output_file} ###')
    instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)

    if len(instances) > 0 and not isinstance(
        instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str
    ):
        for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']:
            instances[col] = instances[col].apply(lambda x: str(x))

    run_evaluation(
        instances,
        metadata,
        output_file,
        args.eval_num_workers,
        process_instance,
        timeout_seconds=120 * 60,  # 2 hour PER instance should be more than enough
        max_retries=5,
    )