File size: 12,126 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
###########################################################################################################
# Adapted from https://github.com/TheAgentCompany/TheAgentCompany/blob/main/evaluation/summarise_results.py
###########################################################################################################


import glob
import json
import os
import re
import sys
from typing import Dict, Tuple


def calculate_cost(model: str, prompt_tokens: int, completion_tokens: int) -> float:
    """

    Calculate the cost of the model call.

    """
    if 'claude-3-5-sonnet' in model.lower():
        # https://www.anthropic.com/pricing#anthropic-api, accessed 12/11/2024
        return 0.000003 * prompt_tokens + 0.000015 * completion_tokens
    elif 'gpt-4o' in model.lower():
        # https://openai.com/api/pricing/, accessed 12/11/2024
        return 0.0000025 * prompt_tokens + 0.00001 * completion_tokens
    elif 'gemini-1.5-pro' in model.lower():
        # https://ai.google.dev/pricing#1_5pro, accessed 12/11/2024
        # assuming prompts up to 128k tokens
        cost = 0.00000125 * prompt_tokens + 0.000005 * completion_tokens
        if prompt_tokens > 128000:
            cost *= 2
        return cost
    elif 'gemini-2.0-flash-exp' in model.lower():
        # price unknown for gemini-2.0-flash-exp, assuming same price as gemini-1.5-flash
        cost = 0.000000075 * prompt_tokens + 0.0000003 * completion_tokens
        if prompt_tokens > 128000:
            cost *= 2
        return cost
    elif 'qwen2-72b' in model.lower():
        # assuming hosted on Together
        # https://www.together.ai/pricing, accessed 12/11/2024
        return 0.0000009 * (prompt_tokens + completion_tokens)
    elif 'qwen2p5-72b' in model.lower():
        # assuming hosted on Together
        # https://www.together.ai/pricing, accessed 12/14/2024
        return 0.0000012 * (prompt_tokens + completion_tokens)
    elif 'llama-v3p1-405b-instruct' in model.lower():
        # assuming hosted on Fireworks AI
        # https://fireworks.ai/pricing, accessed 12/11/2024
        return 0.000003 * (prompt_tokens + completion_tokens)
    elif 'llama-v3p1-70b-instruct' in model.lower():
        # assuming hosted on Fireworks AI
        return 0.0000009 * (prompt_tokens + completion_tokens)
    elif 'llama-v3p3-70b-instruct' in model.lower():
        # assuming hosted on Fireworks AI
        return 0.0000009 * (prompt_tokens + completion_tokens)
    elif 'amazon.nova-pro-v1:0' in model.lower():
        # assuming hosted on Amazon Bedrock
        # https://aws.amazon.com/bedrock/pricing/, accessed 12/11/2024
        return 0.0000008 * prompt_tokens + 0.0000032 * completion_tokens
    else:
        raise ValueError(f'Unknown model: {model}')


def analyze_eval_json_file(filepath: str) -> Tuple[int, int]:
    """

    Analyze a single eval JSON file and extract the total and result from final_score.



    Args:

        filepath: Path to the JSON file



    Returns:

        Tuple containing (total, result) from final_score

    """
    try:
        with open(filepath, 'r') as f:
            data = json.load(f)

        final_score = data.get('final_score', {})
        return (final_score.get('total', 0), final_score.get('result', 0))
    except json.JSONDecodeError as e:
        print(f'Error decoding JSON in {filepath}: {e}')
        return (0, 0)
    except Exception as e:
        print(f'Error processing {filepath}: {e}')
        return (0, 0)


def analyze_traj_json_file(filepath: str) -> Tuple[int, float]:
    """

    Analyze a single trajectory JSON file and extract the steps and tokens

    for each step. Then estimate the cost based on the tokens and the model type.

    Note: this is assuming there's no prompt caching at all.

    """
    steps: int = 0
    cost: float = 0.0
    with open(filepath, 'r') as f:
        data = json.load(f)
        response_id = None
        for action in data:
            if 'tool_call_metadata' in action:
                if action['tool_call_metadata']['model_response']['id'] != response_id:
                    response_id = action['tool_call_metadata']['model_response']['id']
                else:
                    # openhands displays the same model response meta data multiple times, when
                    # a single LLM call leads to multiple actions and observations.
                    continue
                steps += 1
                usage = action['tool_call_metadata']['model_response']['usage']
                model: str = action['tool_call_metadata']['model_response']['model']
                prompt_tokens = usage['prompt_tokens']
                completion_tokens = usage['completion_tokens']
                cost += calculate_cost(model, prompt_tokens, completion_tokens)

    return (steps, cost)


def analyze_folder(

    folder_path: str,

) -> Tuple[Dict[str, Tuple[int, int]], Dict[str, Tuple[int, float]]]:
    """

    Analyze all eval_*.json & traj_*.json files in the specified folder.



    Args:

        folder_path: Path to the folder containing JSON files



    Returns:

        dictionaries:

        - eval_results: Dictionary with filename as key and (total, result) tuple as value

        - traj_results: Dictionary with filename as key and (steps, cost) tuple as value

    """
    eval_results = {}
    traj_results = {}

    eval_pattern = os.path.join(folder_path, 'eval_*.json')
    traj_pattern = os.path.join(folder_path, 'traj_*.json')

    for filepath in glob.glob(eval_pattern):
        filename = os.path.basename(filepath)
        total, result = analyze_eval_json_file(filepath)
        key = re.search(r'eval_(.+)\.json', filename).group(1)
        eval_results[key] = (total, result)

    for filepath in glob.glob(traj_pattern):
        filename = os.path.basename(filepath)
        steps, cost = analyze_traj_json_file(filepath)
        key = re.search(r'traj_(.+)\.json', filename).group(1)
        traj_results[key] = (steps, cost)

    return eval_results, traj_results


def get_task_nature_category(task_name: str) -> str:
    """

    Get the nature category of the task.

    """
    task_nature = task_name.split('-')[0]
    if task_nature.lower() in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance']:
        return task_nature
    else:
        return 'other'


def calculate_score(total: int, result: int) -> float:
    """

    Calculate the score as a number between 0 and 1.



    Formula: score = (result / total) * 0.5 + (result // total) * 0.5

    Explanation:

    - (result / total) * 0.5: This is the completion ratio, scaled down to a 0-0.5 range.

    - (result // total) * 0.5: This is a binary score indicating whether the task was completed or not.



    Args:

        total: Total possible points

        result: Actual points achieved



    Returns:

        Score as a number between 0 and 1

    """
    return (result / total * 0.5) + (result // total * 0.5)


def is_perfect_completion(total: int, result: int) -> bool:
    """

    Check if the task achieved perfect completion.



    Args:

        total: Total possible points

        result: Actual points achieved



    Returns:

        True if result equals total, False otherwise

    """
    return total > 0 and total == result


def main():
    if len(sys.argv) != 2:
        print('Usage: poetry run python summarise_results.py <folder_path>')
        sys.exit(1)

    folder_path = sys.argv[1]

    if not os.path.isdir(folder_path):
        print(f"Error: '{folder_path}' is not a valid directory")
        sys.exit(1)

    eval_results, traj_results = analyze_folder(folder_path)

    if not eval_results:
        print(f'No eval_*.json files found in {folder_path}')
        return

    # Create list of results with completion ratios for sorting
    detailed_results = [
        (
            task_name,
            total,
            result,
            calculate_score(total, result),
            is_perfect_completion(total, result),
            get_task_nature_category(task_name),
        )
        for task_name, (total, result) in eval_results.items()
    ]

    # Sort by score in descending order
    detailed_results.sort(key=lambda x: (-x[3], x[0]))

    # Calculate perfect completion stats
    perfect_completions = sum(
        1 for _, _, _, _, is_perfect, _ in detailed_results if is_perfect
    )

    # Print header
    print('\n# Evaluation Results Report')
    print('\n## Results per File')
    print('\n*Sorted by score (⭐ indicates perfect completion)*\n')

    # Print table header
    print(
        '| Filename | Total | Result | Score | Steps | Cost (assuming no prompt caching)|'
    )
    print('|----------|--------|---------|-------|-------|------|')

    # Print individual file results
    for task_name, total, result, score, is_perfect, task_nature in detailed_results:
        perfect_marker = ' ⭐' if is_perfect else ''
        print(
            f'| {task_name} | {total:,} | {result:,} | {score:.2f}{perfect_marker} | {traj_results[task_name][0]} | {traj_results[task_name][1]:.2f} |'
        )

    # Print summary section
    print('\n## Summary\n')
    print(f'**Tasks Evaluated:** {len(eval_results)}\n')
    print(
        f'**Perfect Completions:** {perfect_completions}/{len(eval_results)} ({(perfect_completions/len(eval_results)*100):.2f}%)\n'
    )

    overall_score = (
        sum(score for _, _, _, score, _, _ in detailed_results)
        / len(detailed_results)
        * 100
    )
    avg_steps = sum(steps for steps, _ in traj_results.values()) / len(traj_results)
    avg_cost = sum(cost for _, cost in traj_results.values()) / len(traj_results)
    print(f'**Overall Score:** {overall_score:.2f}%\n')
    print(f'**Average Steps:** {avg_steps:.2f}\n')
    print(f'**Average Cost (USD):** {avg_cost:.2f}\n')

    # Additional statistics
    if detailed_results:
        highest_score = max(score for _, _, _, score, _, _ in detailed_results)
        lowest_score = min(score for _, _, _, score, _, _ in detailed_results)
        median_score = detailed_results[len(detailed_results) // 2][3]
        avg_score = sum(score for _, _, _, score, _, _ in detailed_results) / len(
            detailed_results
        )

        print('\n## Statistics\n')
        print('| Metric | Value |')
        print('|---------|--------|')
        print(f'| Highest Task Score | {highest_score*100:.2f}% |')
        print(f'| Lowest Task Score | {lowest_score*100:.2f}% |')
        print(f'| Median Task Score | {median_score*100:.2f}% |')
        print(f'| Average Task Score | {avg_score*100:.2f}% |')

        # compute avg score per nature category
        print('\n## Statistics per Nature Category\n')
        print('| Metric | Value |')
        print('|---------|--------|')
        for task_nature in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance', 'other']:
            num_of_tasks = sum(
                1
                for _, _, _, _, _, nature_category in detailed_results
                if nature_category == task_nature
            )
            task_nature_score = (
                sum(
                    score
                    for _, _, _, score, _, nature_category in detailed_results
                    if nature_category == task_nature
                )
                / num_of_tasks
            )
            perfect_completions = sum(
                1
                for _, _, _, _, is_perfect, nature_category in detailed_results
                if nature_category == task_nature and is_perfect
            )
            print(
                f'| Perfect Completions for {task_nature} | {perfect_completions}/{num_of_tasks} ({perfect_completions/num_of_tasks*100:.2f}%) |'
            )
            print(f'| Average Score for {task_nature} | {task_nature_score*100:.2f}% |')


if __name__ == '__main__':
    main()