ar08's picture
Upload 1040 files
246d201 verified
import asyncio
import os
import pandas as pd
from datasets import load_dataset
from evaluation.benchmarks.EDA.game import Q20Game, Q20GameCelebrity
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.utils.async_utils import call_async_from_sync
game = None
def codeact_user_response_eda(state: State) -> str:
global game
model_guess = ''
# retrieve the latest model message from history
if state.history:
last_agent_message = state.get_last_agent_message()
model_guess = last_agent_message.content if last_agent_message else ''
assert game is not None, 'Game is not initialized.'
msg = game.generate_user_response(model_guess)
game.curr_turn += 1
logger.info(f'Model guess: {model_guess}')
logger.info(f'Answer response: {msg}')
if 'bingo!' in msg.lower():
return '/exit'
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response_eda,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=False,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
instance_id = instance['text'].strip()
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Prepare instruction
_game_class = {'eda-things': Q20Game, 'eda-celebs': Q20GameCelebrity}
guesser_kargs = {
'max_new_tokens': 64,
'temperature': 0.8,
'repetition_penalty': 1.0,
'do_sample': True,
} # no penalty
# Use codeactagent as guesser_model
global game
assert metadata.dataset is not None
assert metadata.details is not None
game = _game_class[metadata.dataset](
item=instance['text'].strip(),
answerer_model=metadata.details['answerer_model'],
guesser_model=None,
num_turns=metadata.max_iterations,
openai_api_key=metadata.details['openai_api_key'],
guesser_kargs=guesser_kargs,
)
instruction = f'{game.first_user_utterance}'
logger.info(f'Instruction: {instruction}')
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
last_agent_message = state.get_last_agent_message()
final_message = last_agent_message.content if last_agent_message else ''
logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}')
test_result = game.reward()
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=instance_id,
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'success': test_result,
'final_message': final_message,
'ground_truth': instance['text'],
},
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model'
)
parser.add_argument(
'--dataset',
default='things',
choices=['things', 'celebs'],
type=str,
help='dataset to be used',
)
parser.add_argument(
'--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key'
)
parser.add_argument(
'--data-split',
default='test',
type=str,
help='data split, eg, test',
)
args, _ = parser.parse_known_args()
eda_dataset = load_dataset(
'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split
)
eda_dataset.rename(columns={'text': 'instance_id'}, inplace=True)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
f'eda-{args.dataset}',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
data_split=args.data_split,
details={
'answerer_model': str(args.answerer_model),
'openai_api_key': str(args.OPENAI_API_KEY),
},
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
prepared_dataset = prepare_dataset(
eda_dataset.to_pandas(), output_file, args.eval_n_limit
)
run_evaluation(
prepared_dataset,
metadata,
output_file,
args.eval_num_workers,
process_instance,
)