|
import asyncio
|
|
import os
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.benchmarks.EDA.game import Q20Game, Q20GameCelebrity
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import MessageAction
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
game = None
|
|
|
|
|
|
def codeact_user_response_eda(state: State) -> str:
|
|
global game
|
|
model_guess = ''
|
|
|
|
|
|
if state.history:
|
|
last_agent_message = state.get_last_agent_message()
|
|
model_guess = last_agent_message.content if last_agent_message else ''
|
|
|
|
assert game is not None, 'Game is not initialized.'
|
|
msg = game.generate_user_response(model_guess)
|
|
game.curr_turn += 1
|
|
logger.info(f'Model guess: {model_guess}')
|
|
logger.info(f'Answer response: {msg}')
|
|
if 'bingo!' in msg.lower():
|
|
return '/exit'
|
|
return msg
|
|
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response_eda,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.12-bookworm',
|
|
enable_auto_lint=False,
|
|
use_host_network=False,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
instance_id = instance['text'].strip()
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance_id}.')
|
|
|
|
|
|
_game_class = {'eda-things': Q20Game, 'eda-celebs': Q20GameCelebrity}
|
|
|
|
guesser_kargs = {
|
|
'max_new_tokens': 64,
|
|
'temperature': 0.8,
|
|
'repetition_penalty': 1.0,
|
|
'do_sample': True,
|
|
}
|
|
|
|
|
|
global game
|
|
assert metadata.dataset is not None
|
|
assert metadata.details is not None
|
|
game = _game_class[metadata.dataset](
|
|
item=instance['text'].strip(),
|
|
answerer_model=metadata.details['answerer_model'],
|
|
guesser_model=None,
|
|
num_turns=metadata.max_iterations,
|
|
openai_api_key=metadata.details['openai_api_key'],
|
|
guesser_kargs=guesser_kargs,
|
|
)
|
|
|
|
instruction = f'{game.first_user_utterance}'
|
|
logger.info(f'Instruction: {instruction}')
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
|
|
metadata.agent_class
|
|
],
|
|
)
|
|
)
|
|
|
|
|
|
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
last_agent_message = state.get_last_agent_message()
|
|
final_message = last_agent_message.content if last_agent_message else ''
|
|
|
|
logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}')
|
|
test_result = game.reward()
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance_id,
|
|
instance=instance.to_dict(),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'success': test_result,
|
|
'final_message': final_message,
|
|
'ground_truth': instance['text'],
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model'
|
|
)
|
|
parser.add_argument(
|
|
'--dataset',
|
|
default='things',
|
|
choices=['things', 'celebs'],
|
|
type=str,
|
|
help='dataset to be used',
|
|
)
|
|
parser.add_argument(
|
|
'--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key'
|
|
)
|
|
parser.add_argument(
|
|
'--data-split',
|
|
default='test',
|
|
type=str,
|
|
help='data split, eg, test',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
eda_dataset = load_dataset(
|
|
'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split
|
|
)
|
|
eda_dataset.rename(columns={'text': 'instance_id'}, inplace=True)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
f'eda-{args.dataset}',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
data_split=args.data_split,
|
|
details={
|
|
'answerer_model': str(args.answerer_model),
|
|
'openai_api_key': str(args.OPENAI_API_KEY),
|
|
},
|
|
)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
prepared_dataset = prepare_dataset(
|
|
eda_dataset.to_pandas(), output_file, args.eval_n_limit
|
|
)
|
|
|
|
run_evaluation(
|
|
prepared_dataset,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|